摘要
利用非线性动力学理论和NS方程与飞行力学方程耦合的数值模拟,研究分析了后掠三角翼摇滚运动的动稳定性,给出了动稳定性的判则以及失稳后的演化规律,指出当来流马赫数和雷诺数一定时,小攻角下是摇滚动稳定的,但大攻角出现Hopf分叉不稳定性。数值模拟和理论分析结论一致,与实验结果符合。
Theory of nonlinear dynamics and numerical simulation of coupled Navier-Stokes equations and flight mechanics equations are used to study and analyze the dynamic stability of the rocking motion of a swept delta wing. The judging criteria of dynamic stability and the evolution role after destabilization are given. It is pointed out that with the Mach number and Reynolds number of free stream set, the rock motion is dynamically stable at low angles of attack, but dynamically unstable at high angles of attack and Hopf bifurcation occurs. Numerical Simulation agress with the conclusion of theoretical analysis, and also accords with the experimental results.
出处
《空气动力学学报》
CSCD
北大核心
2006年第1期5-9,共5页
Acta Aerodynamica Sinica
基金
国家自然科学基金(90205013)
关键词
HOPF分叉
动态不稳定
高精度算法
数值模拟
Hopf bifurcation
dynamic stability
high-order algorithm
numerical simulation