期刊文献+

旋转机械故障诊断的量子神经网络算法 被引量:15

A Quantum Neural Networks Fault Diagnosis Algorithm for Rotating Machinery
下载PDF
导出
摘要 针对故障模式之间存在交叉数据的诊断不确定问题,将多层激励函数的量子神经网络引入多传感器信息融合之中,提出一种基于量子神经网络的多传感器信息融合故障诊断算法。并将其应用到旋转机械故障诊断中,通过测试被诊断设备的振动速度和加速度信号,求出两传感器对各故障模式的故障隶属度,利用多层激励函数的量子神经网络进行信息融合,得到融合的各故障模式隶属度值,确定真正的故障模式,提高了故障诊断的准确率。 An information fusion fault diagnosis algorithm based on the quantum neural networks is presented for the pattern recognition with overlapping classes, and it is used in the fault diagnosis of rotating machinery. By measuring the speed and acceleration of the vibration, the membership function assignment of two sensors to all fault patterns is calculated, and the fusion membership function assignment is gained by using the 5-level transfer function quantum neural networks(QNN), then according to the fusion data, the fault pattern is found. Comparing the diagnosis results based on separate original data with the ones based on QNN fused data, it is shown that the quantum fusion fault diagnosis method is more accurate.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第1期132-136,共5页 Proceedings of the CSEE
基金 江苏省自然科学基金项目(BK2004021) 教育部科学技术研究重点项目基金(105088) 总装备部国防预研基金(413170203)
关键词 量子神经网络 多层激励函数 信息融合 模式识别 故障诊断 Quantum neural network Multi-level transfer function Information fusion Pattern recognition Fault diagnosis
  • 相关文献

参考文献17

  • 1Bennett C H,Steck J E,Behrman E C.Quantum information and computation[J].Nature,2000,404(3):247-255.
  • 2Kak S C.On quantum neural computing[J].Information Sciences,1995,13(2):143-160.
  • 3Karayiannis N B,Purushothaman G.Fuzzy pattern classification using feed forward neural networks with multilevel hidden neurons[J].IEEE International on Neural Networks,1994,5(2):127-132.
  • 4Gopathy P,Nicolaos B,Karayiannis N B.Quantum neural networks:Inherently fuzzy feedforward neural networks[J].IEEE Transactions on Neural Networks,1997,8(3):679-693.
  • 5Behman E C,Chandrashkar V G,Wang C K.A quantum neural network computes entanglement[J].Physical Review Letters,2002,16(1):152-159.
  • 6Narayanan A,Menneer T.Quantum artificial neural network architectures and components[J].Infirmation Sciences,2000,128(3):231-255.
  • 7Zhou J,Qing G,Adam Krzyzak.Recognition of handwritten numerals by quantum neural network with fuzzy features[J].International Journal on Document Analysis and Recognition,1999,2(1):30-36.
  • 8Li F,Zhao S G,Zheng B Y.Quantum neural network in speech recogniton[C].Beijing:6th International Conference on Signal Processing,2002.
  • 9Shiyan H.Quantum neural network for image watermarking[C].Heidelberg Germany:International Symposium on Neural Networks,Springer-Verlag,2004.
  • 10冷永刚,王太勇,李瑞欣,彭永胜,邓学欣.变尺度随机共振用于电机故障的监测诊断[J].中国电机工程学报,2003,23(11):111-115. 被引量:53

二级参考文献50

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2徐京华,童勤业,刘仁.大脑皮层信息传输和精神分裂症[J].生物物理学报,1996,12(1):103-108. 被引量:22
  • 3JIANG Joeair,CHEN Chingshan,LIU Chihwen.A new protection scheme for fault detection,direction discrimination,classififation,and location in transmission lines[J].IEEE Transactions on Power Delivery,2003,18(1):34-42.
  • 4LONCK J,et al.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,2000,11(2):339-347.
  • 5FIPA.Specifications[EB/OL].http://www.fipa.org/,2002-10-12.
  • 6GALLAGHER M,THOMAS D.Visualization of learning multi-layer perceptron networks using principal component Analysis\[J\].IEEE Transactions on Systems,Man,and Cybernetics--Part B:Cybernetics,2003,33(1):28-34.
  • 7CORKILL D,LESSER V R.The use of metal-level control for coordination in a distributed problem solving network[A].Proceedings of the Eighth International Joint Conference on AI[C].1983.748-756.
  • 8HAYES-ROTH B.A blackboard architecture for control[J].Artificial Intelligence,1985,26(1):96-101.
  • 9SHAHBAZIAN E,et al.Multi-agent data fusion workstation architecture[J].SPIE-the International Society for Optical Engineering,1998,3376:60-68.
  • 10PLOIX S,MICHAU F.Collaborative problem solving project in remote diagnosis[A].IFAC Conference on Internet Based Control Education[C].2001.12-14.

共引文献198

同被引文献209

引证文献15

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部