期刊文献+

纳米CoFe_2O_4/SiO_2磁性复合体的制备与表征 被引量:14

原文传递
导出
摘要 以正硅酸乙酯和金属硝酸盐分别作为二氧化硅和铁氧体的前驱体,通过溶胶凝胶工艺成功制备了磁性CoFe2O4/SiO2纳米复合体.通过综合热分析(DSC)、红外吸收光谱(FTIR)、扫描电子显微镜(TEM)、X射线粉末衍射(XRD)和拉曼光谱(Raman)等分析探讨了该复合体的合成机理,利用振动样品磁场计对样品磁性能进行了测试.研究发现,当干凝胶热处理温度较低时,材料以非晶态存在,当热处理温度达到400℃时,SiO2基体中开始有CoFe2O4团簇形成,当热处理温度达到800℃时SiO2基体中就形成了大小约为17nm的CoFe2O4纳米晶.CoFe2O4磁性粒子的生成伴随着二氧化硅网络的重组以及金属离子与氧化硅基体之间相互反应的加强.但热处理温度升高到800℃时,基体中纳米磁性粒子与基体间的反应会明显减弱甚至消失.复合体的饱和磁场强度以及矫顽力随着热处理温度的增加而逐步增长.
出处 《科学通报》 EI CAS CSCD 北大核心 2006年第6期660-664,共5页 Chinese Science Bulletin
  • 相关文献

参考文献18

  • 1Polloni R,Scremin B F,Calvelli P,et al.Metal nanoparticles-silica composites:Z-scan determination of non-linear refractive index.J Non-crys Solids,2003,322(1-3):300~305
  • 2Andrei A E,Kirill S N,Alexei V L.Ordered iron nanowires in the mesoporous silica matrix.J Magn Magn Mater,2004,272~276:1609~1611
  • 3汪敏强,王云鹏,姚熹,孔凡滔,张良莹.二氧化硅凝胶玻璃基质中硒化锌纳米晶的原位生长及光谱表征[J].科学通报,2004,49(3):213-216. 被引量:7
  • 4熊永红,熊曹水,李铁,李玉芝,王德兴.纳米复合材料Fe_x(SiO_2)_(1-x)中的界面相互作用和渗透效应对磁性的影响[J].中国科学(A辑),1998,28(10):952-960. 被引量:5
  • 5Edesia M B,Wellngton F,Nelcy D S.Characterization of silica nanocomposites obtained by sol-gel process using positron annihilation spectroscopy.J Phys Chem Solids,1999,60:211~221
  • 6Bentivegna F,Ferre J,Nyolt M,et al.Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix:structural and magnetic properties.J Appl Phys,1998,83(12):7776~7788
  • 7Huang X H,Chen Z H.Nickel ferrite on silica nanocomposites prepared by the sol-gel method.J Magn Magn Mater,2004,280:37~43
  • 8Laurence B,Philippe T,Abel R,et al.Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powders.J Magn Magn Mater,1996,153:389~396
  • 9Lee J G,Park J Y,Oh Y J,et al.Magnetic properties of CoFe2O4 thin films prepared by a sol-gel method.J Appl Phys,1998,84(5):2801~2804
  • 10Ennas G,Marongiu G,Piccaluga G,et al.Interface Controlled Materials.Weinheim:Wiley-VCH,2000.200~211

二级参考文献10

  • 1[1]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933
  • 2[2]Klimov Victor I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B, 2000, 104: 6112
  • 3[3]Dabbousi B O, Rodriguez-Viejo J, et al. (CdSe)ZnS cpre-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B, 1997, 101: 9463
  • 4[4]Katayama K, Yao H, Nakanishi F, et al. Lasing characteristics of low threshold ZnSe-based blue/green laser diodes grown on conductive ZnSe substrates. Appl Phys Lett, 1998, 73: 102
  • 5[5]Empedocles S A, Norris D J, Bawendi M G. Photoluminescence spectroscopy of single cdse nanocrystallite quantum dots. Phys Rev Lett, 1996, 77: 3873
  • 6[6]Efros A L, Efros A. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond, 1982, 16: 772
  • 7[7]Brus L E. Electron-electron and electron-hole interaction in small semiconductor crystallites: The size dependence of the lowest exited electronic state. J Phys Chem, 1984, 80(9): 4403
  • 8[8]Lavallard P. Excitons in nanocrystals. J Cryst Growth, 1998, 184/185: 352
  • 9[9]Xia J B. Electronic structures of zero-dimension quantum wells. Phys Rev B, 1989, 40: 8500
  • 10[10]Cardona M, Guntherrodt G. Light Scattering in Solids. Berlin, Heidelbery, New York: Spring-Verlag, 1980

共引文献9

同被引文献180

引证文献14

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部