期刊文献+

分块PCA鉴别特征抽取能力的分析研究 被引量:17

The Study of Extracting Ability of Discriminant Features for Modular PCA
下载PDF
导出
摘要 基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。 Based on Principal Component Analysis(PCA), a new technique called Modular PCA is developed for human face recognition in this paper. First, in proposed approach, the original images are divided into smaller modular images, which are also called sub-images. Then, the well-known PCA method can be directly used to the sub-images obtained from the previous step for feature extraction, so the pattern classification can be implemented. The advantage of the represented way, when compared with conventional PCA algorithm on original images, is that the local discriminant features of the original patterns can be efficiently extracted, which are available to differentiate one class from another. To test Modular PCA and to evaluate its performance, a series of experiments were performed on Yale human face image databases. The experimental results indicate that the performance of the new method in terms of recognition rate is obviously superior to that of ordinary PCA algorithm on original images, and is superior to that of some discriminant analysis based on the Fisher discriminant criterion such as Fisherfaces, F-S and combination method.
出处 《计算机科学》 CSCD 北大核心 2006年第3期155-159,共5页 Computer Science
基金 国家自然科学基金(60472060) 江苏省自然科学基金(05KJD520050)资助
关键词 线性鉴别分析 主成分分析 特征抽取 分块主成分分析 人脸识别 Linear discriminant analysis (LDA), Principal component analysis (PCA), Feature extraction, Modular principal component analysis(Modular PCA), Face recognition
  • 相关文献

参考文献20

  • 1Wilks S S.Mathematical Statistics.New York :Wiley Press,1962.
  • 2Duda R,Hart P.Pattern Classification and Scene Analysis.New York:Wiley Press,1973.
  • 3Swets D L,Weng J.Using discriminant eigenfeatures for image retrieval.IEEE Transactions on Pattern Analysis and Machi ne Intelligence,1996,18(8):831~836.
  • 4Belhumeur P N,Hespanha J P,Kriengman D J.Eigenfaces vs Fisherfaces :Recognition using class specific linearprojection.IEEE Trans on Pattern Anal Machine Intell,1997,19(7):711~720.
  • 5Liu Cheng-Jun,Wechsler H.A shape and texture-based enhanced Fisher classifier for face recognition.IEEE Transactions on Image Processing,2001,10(4):598~608.
  • 6Foley D H,Sammon J W Jr.An optimal set of discriminant vectors.IEEE Transactions on Computer,1975,24(3):281~289.
  • 7Duchene J,Leclercq S.An optimal Transformation for discrimi nant and principal component analysis.IEEE Transactions on Pattern Analysis and Machi ne Intelligence,1988,10 (6):978 ~ 983.
  • 8Tian Q.Image classification by the Foley-Sammon transform.Optical Engineering,1986,25(7):834~839.
  • 9杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 10Yang Jian,Yang Jing-Yu .Why can LDA be performed in PCA transformed space? [J].Pattern Recognition,2003,36:563~566.

二级参考文献18

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献112

同被引文献142

引证文献17

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部