期刊文献+

最优波动率模型选择及其在黄金市场中的应用 被引量:2

Choice of Best Volatility Models and Its Application to Gold Market
下载PDF
导出
摘要 文章先总结了波动率模型过去的研究,并对不同波动率模型的评估提出三种方法,然后讨论了这些方法在黄金市场波动率预测中的应用。通过分析黄金市场1975年到2004年的数据,得出的结论是,如果基于样本外四期预测误差的评估,EWMA模型较优;如果基于样本外四期预测的R平方的评估,T-GARCH模型较优;如果基于VAR损失函数的真实性检验评估,EWMA模型较优。最后对未来关于金融市场波动率的研究提出一些建议。 For giving an accurate forecast for financial market, the article discusses the volatility and its evaluation. Firstly it summarizes the achievement of the research, and investigates some methods for choosing the volatility models. Then it discusses its application to gold market. By analyzing the data of gold market from 1975 to 2004, we conclude that, if based on the four weeks of out-of-sample error forecast, the EWMA is better; if based on the four weeks R-square forecast, the T-GARCH is better; if based on the VaR loss function by reality check, the EWMA is better, Finally, The article puts forward some suggestions for future volatility research.
出处 《运筹与管理》 CSCD 2006年第2期108-112,143,共6页 Operations Research and Management Science
关键词 金融学 预测评估 样本外预测 黄金市场 波动率 finance forecasting performance out-of-sample forecast gold markets volatility
  • 相关文献

参考文献11

  • 1Chen An-Sing.Forecasting the S & P 500 index volatility[ J ].International Review of Economics and Finance,1997,6 (4):391-404.
  • 2Bollerslev Anderson,Labys Diebold.Modeling and Forecasting Realized Volatility [ EB/OL].Duke University,Department of Economics,working paper.
  • 3Brailsford Timothy J,Faff Robert W.An evaluation of volatility forecasting techniques[J ].Journal of Banking & Finance,1996,20(3):419-438.
  • 4Barucci Emilio.On measuring volatility and the GARCH forecasting performance[J].Journal of International Financial Markets,Institutions & Money,2002,12(3):183-200.
  • 5White.A Reality Check for Data Snooping[J].Econometrica,2000,68(5):1097-1126.
  • 6González-Rivera Gloria.Forecasting volatility:A reality check based on option pricing,utility function,value-at-risk,and predictive likelihood [J].International Journal of Forecasting,2004,20(4):629-645.
  • 7Hansen.An Unbiased and Powerful Test for Superior Predictive Ability[EB].Brown University.Department of Economics Working Paper.http://chico.pstc.brown.edu/-phansen.
  • 8Hansen A,Lunde A.Forecast comparison of volatility models:does anything beat a GARCH (1,1)? [EB/OL].Brown University Working Paper,2002.
  • 9Lopes.Evaluating the predictive accuracy of volatility models[J].Journal of Forecasting,2001,(20):87-109.
  • 10Diebold Mariano.Comparing predictive accuracy[J ].Journal of Business and Economic Statistics,1995,(13):253-263.

同被引文献23

  • 1兰秋军,马超群,文凤华.金融时间序列去噪的小波变换方法[J].科技管理研究,2004,24(6):117-120. 被引量:22
  • 2翟敏,华仁海.国内外黄金市场的关联研究[J].产业经济研究,2006(2):30-35. 被引量:41
  • 3Chen R,Tsay R S.Functional Coefficient Autoregressive Models.Journal of the American Statistical Association,(1993b)88(421):298.
  • 4Huang J Z,Shen H.Functional Coefficient Regression Models for Nonlinear Time Series:A Polynomial Spline Approach,Scandinavian Journal of Statistics,2004(31):515.
  • 5Daubechies I.Ten Lectures on Wavelet[M].PA:Society for Industrial and Applied Mathematics,1992.
  • 6Cont, R. Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues[J]. Quantitative Finance, 2001,1(1):223-236.
  • 7Andersen, T.G., Bollerslev, T., Meddahi, N. Correcting the Errors: Volatility Forecast Evaluation Using High Frequency Data and Realized Volatilities[J]. Econometrica, 2005,73(1):279-296.
  • 8White, H. A Reality Check for Data Snooping[J]. Econometrica, 2000,68(2):1097-1126.
  • 9Kupiec, P. Techniques for Verifying the Accuracy of Risk Measurement Models[J]. Journal of Derivatives, 1995,32(2):173-184.
  • 10Engle, R., Manganelli, S. CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles[J]. Journal of Business and Economic Statistics, 2004,22(3):367-381.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部