期刊文献+

基于模块2DPCA的人脸识别方法 被引量:61

A Human Face Recognition Method Based on Modular 2DPCA
下载PDF
导出
摘要 提出了模块2DPCA(two-d im ensional princ ipal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 A human face recognition technique called modular 2DPCA is presented in this paper. First, the original images are divided into modular images in proposed approach. Then, an image covariance matrix is constructed directly using the sub-images, and its eigenvectors are derived for image feature extraction. Compared with previous techniques based on image vectors such as PCA, there are two advantages for this way: 1 ) the sub-image matrices don' t need to be transformed into vectors prior to feature extraction, and dimension reduction of discriminant features can be effected conveniently; 2) singular value decomposition of matrix is absolutely avoided in the process of feature extraction so the features for recognition can be gained easily. Moreover, 2DPCA is the special case of modular 2DPCA. To test modular 2DPCA and evaluate its performance, a series of experiments were performed on two human face image databases: ORL and NJUST603 human face databases. The experimental results indicated that the recognition performance of modular 2DPCA is superior to that of PCA and is more robust than that of 2DPCA as well.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第4期580-585,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60472060) 江苏省自然科学基金项目(05KJD500036)
关键词 线性鉴别分析 模块2DPCA 特征抽取 人脸识别 linear discriminant analysis, modular two-dimensional principal component analysis (modular 2DPCA),feature extraction, face recognition
  • 相关文献

参考文献13

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2Pentland A.Looking at people:Sensing for ubiquitous and wearable computing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (1):107 ~ 119.
  • 3Peter N Belhumeur,Joao P Hespanha,David J Kriengman.Eigenfaces vs fisherfaces:recognition using class specific linearprojection[J].IEEE Transactions on Pattern Anal ysis and Machine Intelligence,1997,19 (7):711 ~ 720.
  • 4Jin Zhong,Yang J Y,Hu Z S,et al.Face recognition based on uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405 ~ 1416.
  • 5Hong Z Q,Yang J Y.Optimal discriminant plane for a small number of samples and design method of classifier on the plane[J].Pattern Recognition,1991,24(4):317 ~324.
  • 6Liu K,Cheng Y Q,Yang J Y.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6 (5):817 ~ 829.
  • 7Chen L F,Mark Liao Y H,Ko M T,et al.A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713 ~ 1726.
  • 8Yu Hua,Yang Jie.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34 (10):2067 ~ 2070.
  • 9杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 10Yang Jian,Yang Jing-yu.Why can LDA be performed in PCA transformed space?[J].Pattern Recognition,2003,36 (2):563 ~566.

二级参考文献27

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献132

同被引文献445

引证文献61

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部