期刊文献+

一种双向压缩的二维特征抽取算法及其应用 被引量:8

Two Dimension Double PCA for Extract Features and Application
下载PDF
导出
摘要 针对二维主分量分析(2DPCA)在最优投影轴上的投影是一个向量,其抽取出的图像特征是一个矩阵,特征数据量大,不便于直接分类的弱点,提出了一种特征抽取新方法。首先用2DPCA作一次横向压缩,对抽取出的特征矩阵再作一次2DPCA进行纵向压缩。这样抽取出的特征数量大大减少,可加快分类速度。ORL人脸库的试验结果表明了该方法的有效性。 Because the features extracting by Two Dimension Principal Component Analysis (2DPCA) are matrixes, it needs much space to store these features and slow down the classification speed. We propose a novel feature extraction algorithm called Two Dimension Double PCA (2DDPCA) in this paper. First we use 2DPCA compressing the images in horizon direction, then we compress the features in vertical direction using 2DPCA again. Thus, the dimension of features is lesser and the speed of classification is faster. The experiment on ORL face database indicates that the proposed method outperform 2DPCA.
出处 《计算机应用研究》 CSCD 北大核心 2006年第5期63-64,66,共3页 Application Research of Computers
基金 国家自然科学资金资助项目(60472060)
关键词 二维主分量分析 特征抽取 人脸识别 Two Dimension PCA (2DPCA) Feature Extraction Face Recognition
  • 相关文献

参考文献8

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2Peter N Belhumeur, Joao P Hespanha, David J Kriengman. Eigenfaces vs Fisherfaces:Recognition Using Class Specific Linear Projection[J]. IEEE Trans. on PAMI,1997,19(7) : 711-720.
  • 3Zhong Jin, J Y Yang, Z S Hu, et al. Face Recognition Based on Uncorrelated Discriminant Transformation [ J ]. Pattern Recognition,2001,34(7) : 1405-1416.
  • 4Li-Fen Chen, H-Y Mark Liao, M-T Ko, et al. A New LDA-based Face Recognition System Which Can Solve the Small Sample Size Problem [ J ]. Pattern Recognition, 2000, 33 ( 10 ) : 1713 - 1726.
  • 5Hua Yu, Jie Yang. A Direct LDA Algorithm for High-dimensional Data : With Application to Face Recognition [ J ]. Pattern Recognition,2001, 34(10) :2067-2070.
  • 6杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 7Liu K, Cheng Y-Q, Yang J-Y, et al. Algebraic Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion [ J ].Pattern Recognition, 1993, 26 ( 6 ) :903 - 911.
  • 8Jian Yang, David Zhang, Jing-yu Yang. Two-dimensional PCA : A New Approach to Appearance-based Face Representation and Recognition[J]. IEEE Trans. PAMI,2004, 26(1):131-137.

二级参考文献18

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献100

同被引文献79

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部