摘要
算子方幂的研究,以往主要致力于对亏指数的探讨,而有关算子方幂的自伴性,据知还无人涉足.研究了对于二阶的自伴边条件下由对称微分算式l(y)=-y"+q(x)y所生成的算子L(包括正则和奇异的情形),讨论其方幂算子L2=LL的自伴性.先在[0,π]上考虑正则的暴算子L2的自伴性,然后推广到[0,∞)上奇异的情形.
On this paper following results on self adjointness of product L1 L2 of two 2-order self adjoint differential operators L1, L2, as well as the power L2 of 2-order self-adjoint operator L are obtained:Theorem 1 The product L1L2 of two 2-order selfadjoint differential operators is selfadjoint if and only if L1=L2.Theorem 2 The power L2 of 2-order differential operator L is selfadjoint if L is selfadjoint.These results are proved in ordinary case and partly proved in singular case.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1996年第1期1-10,共10页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金
关键词
微分算子
自伴性
算子幂
算子积
differential operators self adjointness power of operatos product of operators