摘要
研究了单部件组成的退化可修系统,在假定故障部件“修复非新”的条件下,以系统中部件的故障次数N为更换策略进行了研究,我们推导出系统经长期运行后,单位时间内期望效益的明显表达式,而且在一定条件下证明了最优策略N*是所有更换策略中最优的.最后还通过几何过程对此进行了讨论.
In this paper, a deteriorative repairable system consisting of a component is studied. Assume that the component after repair is not "as good as new", we consider a kind of replacement policy N of the system based on the number of failures. The explicit expressions of the long-run average benefit per unit time are calculated. Under certain conditions, we prove that the policy N^* is even optimal among all replacement policy. Finally, we discuss this policy by using the geometric process.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第4期1-4,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金项目(70473037)
国家教育部博士学科点科研基金项目(20020287001)资助
关键词
可修系统
更新过程
期望效益
几何过程
repairable system
renewal process
average benefit
geometric process