期刊文献+

不相关最佳鉴别矢量集的有效算法 被引量:1

Efficient Algorithm to Optimal Set of Uncorrelated Discriminates Vectors
下载PDF
导出
摘要 线性鉴别分析中处理小样本问题的方法有两类:①在模式识别之前,通过降低模式样本特征向量的维数达到消除奇异性的目的;②发展算法获得低维鉴别特征。将这两种方法结合起来,解决了高维小样本情况下基于广义Fisher线性鉴别准则的不相关最优鉴别矢量集的求解问题,给出了抽取最优鉴别矢量的有效算法。 Nowadays there are two kinds of methods for dealing with the problems of small sample size in linear discriminant analysis. One is that the aim of avoiding singularity is arrived by dimension reduction of feature vector of pattern samples before pattern recognition. The other is to develop an algorithm to gain the lower discriminant features. By combining the above two kinds of methods, the problem has been solved that how to gain the optimal set of uncorrelated discriminant vectors for small sample size problem based on the generalized Fisher' s linear discriminant criterion. An efficient algorithm has been presented in this paper.
出处 《计算机应用研究》 CSCD 北大核心 2006年第6期31-33,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60472060) 江苏省自然科学基金资助项目(05KJD520036)
关键词 特征抽取 小样本问题 广义线性鉴别分析 不相关鉴别矢量 人脸识别 Feature Extraction Small Sample Size Problem Generalized Linear Discriminates Analysis Uncorrelated Discriminates Vectors Face Recognition
  • 相关文献

参考文献13

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2RichardODuda PeterEHart DavidGStork.模式分类[M].北京:机械工业出版社,2003.134-174.
  • 3K Liu,J Y Yang.An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817-829.
  • 4金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 5Z Jin,J Y Yang,Z S Hu,et al.Face Recognition Based on Uncorrelated Discriminant Transformation[J].Pattern Recognition,2001,34(7):1405-1416.
  • 6杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 7J Yang,J Y Yang.Why Can LDA be Performed in PCA Transformed Space?[J].Pattern Recognition,2003,36(2):563-566.
  • 8H Yu,J Yang.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 9L F Chen,H Y Mark Liao,M T Ko,et al.A New LDA-based Face Recognition System Which can Solve the Small Sample Size Problem[J].Pattern Recognition,2000,33(10):1713-1726.
  • 10W M Zheng,L Zhao,C R Zou.An Efficient Algorithm to Solve the Small Sample Size Problem for LDA[J].Pattern Recognition,2004,37:1077-1079.

二级参考文献19

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献167

同被引文献8

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience, 1991,3( 1 ):71-86.
  • 3Belhumeur P N.Eigenfaces vs fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720.
  • 4Foley D H,Sammon J W J.An optimal set of discriminant vectors[J]. IEEE Transactions on Computer, 1975,24(3 ) : 281-289.
  • 5Yang J,Zhang D,Frangi A,et al.Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J]. IEEE Trans Pattern Anal and Mach Intell,2004(26):131-137.
  • 6Kongsontana S,Rangsanseri Y.Face recognition using 2DLDA algorithm[C]//The 8th International Symposium on Signal Processing and Its Applications,2005:675-678.
  • 7Zhang D,Zhou Z H. (2D)^2pCA:2-directional 2-dimensional PCA for efficient face reprentation and recognition[J].Neurocomputing, 2005,69 : 224-231.
  • 8杨健,杨静宇,等.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447-452. 被引量:39

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部