期刊文献+

一类带弱奇异核的偏积分微分方程的两种数值解

Two Numerical Solutions for a Partial Integro-differential Equation With a Weakly Singular Kernel
下载PDF
导出
摘要 给出了数值求解一类偏微分方程的两种全离散格式。x方向一种采用Legendre谱方法,第二种采用Galerkin谱方法,t方向用拉普拉斯的数值逆求解。第二种方法更具有可操作性,精度高,便于理论分析的优点. In this paper, two fully discrete methods of a partial integro - differential equation is con sidered.This article presents the Legendre spectral method and the Galerkin spectral method in the direction of x, but applies the inversion technique for the Laplace transform in the direction of t. The second method in more practical and more precise and easier to be analyzed theoretically.
作者 吴专保 徐大
出处 《宜春学院学报》 2006年第2期7-10,14,共5页 Journal of Yichun University
基金 国家自然科学基金资助(资助项目号:10271046)
关键词 拉普拉斯变换 数值逆 Legendre谱方法 Galerkin谱方法 偏微分方程 Laplace Transform Inversion technique Legendre spectral method Galerkin spectral method partial differential equation
  • 相关文献

参考文献5

  • 1D.L.Jagerman,An Inversion Technique for the Laplace Transform with Application to Approximation[J].B.S.T.J.,1978,(3):669-710.
  • 2D.L.Jagerman,An Inversion Technique for the Laplace Transform[J],B.S.T.J.1982,61(8):1995-2002.
  • 3P.P.Korovkin,Linear Operations and Approximation Theory[M].New York:Gordon and Breach,1960.
  • 4W.McLean and V.Thomee,Time Discretization of an Evolution Equation via Laplace Transforms[J].AMR,2003,(7):1-27.
  • 5杨晓霖,徐大.拉普拉斯变换的数值逆在微分方程中的应用[J].湖南师范大学自然科学学报,2004,27(2):21-25. 被引量:13

二级参考文献6

  • 1PALEY R E,WEINER N. Fourier transforms in the complex domain,american mathematical society(Vol.XIX)[M].New York:Colloquium Publications,1934.
  • 2KOROVKIN P P. Linear operations and approximation theory[M]. New York:Cordon and Breach,1960.
  • 3FELLER W. An introduction to probability theory and its applications(Vol.II)[M].New York:John Wiley & Sons,1965.
  • 4JAGERMAN D L.An inversion technique for the laplace transfom with application to approximation[J]. B S T J,1978,(3):669-710.
  • 5JAGERMAN D L.An inveresion technique for the laplace transform[J]. B S T J,1982,(8):1 995-2 002.
  • 6胡健伟 汤怀民.微分方程数值方法[M].北京:科学出版社,2001.10-17.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部