期刊文献+

基于颜色和变形模板的实时人体检测 被引量:4

Color and Deformable Templates Based Real-time Pedestrian Detection
下载PDF
导出
摘要 针对目前人体检测算法存在不能检测多角度人体目标以及实时性差等问题,提出了一种在静态图像中实时检测任意角度人体目标的算法。该算法分别利用目标颜色和轮廓两类特征构造两种检测器。颜色检测器首先进行基于面部肤色和头部发色的彩色分割,然后引入积分图像算法快速提取分割后的图像头部目标区域。轮廓检测器利用头肩轮廓形状的稳健性,用参数化变形模板对头肩轮廓建模,该模板由两个存在几何尺度和位置约束的椭圆构成,再定义两个不同计算复杂度的模板匹配策略对人体头肩部分进行分级检测。最后利用上述两种检测器构建一个级联检测系统,级联检测结构大大提高了算法的速度,使算法可以对分辨率为352×288的图像做30 fps的实时检测,实验结果表明,该算法是切实有效的。 Most of the present pedestrian detecting algorithms can not deal with multi-view objects and can not perform in real time. Faced with these problems, this paper provided a real-time multi-view pedestrian detecting algorithm, which utilizes respectively the color and the contour features to construct two detectors. One is a color based detector, which, first, segments the original images based on skin color of face and hair color, and then locates the candidate head regions by using integral images, and the other is the contour detector, which employs the robust head-shoulder contour feature to construct a deformable template based on two ellipses with size and position constraints. Two template matching algorithms with different computing complexity were introduced to detect head-shoulder objects. Finally, a cascaded detecting system was generated by the two detectors mentioned above. The whole system can process images with 352 x 288 resolution at a speed of 30fps by using the cascaded structure. The algorithm proved to be effective.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第6期861-866,共6页 Journal of Image and Graphics
关键词 人体检测 彩色分割 头肩轮廓 积分图像 变形模板 多级检测 pedestrian detection, color segmentation, head-shoulder contour, integral image, deformable template, cascaded detection
  • 相关文献

参考文献14

  • 1Elegmmal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90 (7):1151 ~ 1163.
  • 2Mckenna S J,Jabri S,Duric Z,et al.Tracking interacting people [A].In:Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition [C],Grenoble,France,2000:348 ~ 353.
  • 3Paragios N K,Deriche R.A-PDE-based level-set approach for detection and tracking of moving objects [A].In:Proceedings of Sixth International Conference on Computer Vision[ C],Washington,DC,USA,1998:1139~1145.
  • 4Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],South Carolina,USA,2000:142 ~ 149.
  • 5Mohan A,Papageorgiou C,Poggio T.Example-based object detection in images by components[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(4):349 ~361.
  • 6Sidenbladh H.Detecting human motion with support vector machines [A].In:Proceedings of the 17th International Conference on Pattern Recognition[C],Cambridge,MA,UK,2004:188~ 191.
  • 7Zhang Zhen-qiu,Zhu Long,Li S Z,et al.Real-time multi-view face detection [A].In:Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition [C],Washington,DC,USA,2002:142 ~ 147.
  • 8Chong L,Tat-Seng C,Teck-Khim N.Face tracking in video with hybrid of Lucas-Kanade and condensation algorithm [A].In:Proceedings of 2003 International Conference on Multimedia and Expo [C],Maryland,USA,2003:293 ~296.
  • 9Rein-Lien Hsu,Abdel-Mottaleb M,Jain A K.Face detection in color images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (5):696 ~ 706.
  • 10Viola P,Michael J.Robust Real Time Object Detection [ R ].Technical Report:CRL-2001-1,Cambridge University,Cambridge,MA,UK,2001.

同被引文献32

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3伊怀锋,黄贤武.基于均值偏移的彩色图像分割算法[J].计算机应用,2006,26(7):1605-1606. 被引量:9
  • 4潘浩,高枝宝,何小海,殷俊琳.基于计算机视觉的公交系统人流量检测算法[J].计算机工程,2007,33(11):216-218. 被引量:8
  • 5ZHAO TAO, NECATIA R. Segmentation and tracking of multiple humans in crowded encironments [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2008, 30(7).. 1-14.
  • 6KELLY P, CONNOR N E, SMEATON A F. Robust pedestrian detection and tracking in crowded scenes[J]. Image and Vision Computing, 2009, 27 (10) : 1445- 1458.
  • 7JUSTIN G, NII.ES V L, et al. Automatic detection of heads in colored images [C] // Proceedings of the Second Canadian Conference on Computer and Robot Vision, May 9-11, 2005, Victoria, BC, Canada. [S. l]: IEEE, 2005: 276-281.
  • 8StanBirchfield. Elliptical head tracking using intensity gradients and color histograms[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23- 25, 1998, Santa Barbara, CA,USA. [S. l] : IEEE, 1998:232-237.
  • 9ZOU W, LI Y, YUAN K, et al. Real-time elliptical head contour detection under arbitrary pose and wide distance range [J]. Journal of Visual Communication and Image Representation, 2009, 20(3):217-228.
  • 10ZHAO M, SUN D H, HE H P. Hair-color modeling and head detection[C]// Proceedings of the 7th World Congress on Intelligent Control and Automation, WCICA'08, June 25-27, 2008, Chongqing, China. [S. l]: IEEE, 2008: 7768-7772.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部