期刊文献+

基于多目标进化算法的锅炉热损失优化研究 被引量:3

Research on Optimization of Boiler Heat Loss Based on Multi-objective Evolutionary Algorithm
下载PDF
导出
摘要 针对锅炉热损失模型的特点,提出基于Pareto最优概念的多目标进化算法实现运行工况寻优,然后根据模糊集理论在Pareto解集中求得满意解,获得最佳的锅炉燃烧调整方式。通过某600MW锅炉热损失的优化研究,并与基于神经网络的寻优结果比较,数值计算表明支持向量机模型寻优结果在Pareto前沿具有更好的多样性,结果更优,可指导运行人员进行参数优化调整,提高燃烧经济性。 In accordance with the features of the model of boiler heat loss, the scheme of optimal boiler combustion adjustment is proposed. In this scheme, using multi-objectlve evolutionary algorithm based on Pareto optimal concept the optimal operational status is searched, then sarisfactory solution is obtained in Pareto optimal sets based on fuzzy sets theory. Through the research on optimization of boiler heat loss in 600MW power plant, and comparing the results with optimal search results by neural network method, the calculation shows the results of optimization from support vector machine model offer more diversified in Pareto frontier, more optimal results. It is a good operator guide for optimal parameter adjustment to enhance economics of combustion.
出处 《自动化仪表》 CAS 2006年第6期5-9,共5页 Process Automation Instrumentation
关键词 锅炉热损失 支持向量机 多目标进化算法 优化 Boiler heat loss Support vector machine Multi-objective evolutionary algorithm Optimization
  • 相关文献

参考文献5

  • 1Chu Jizheng,Shieh Shyanshu.Constrained optimization of combustion in a simulated coal-fired boiler using artificial neural network model and information analysis[J].Fuel,2003,82(2):693-703.
  • 2阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496. 被引量:102
  • 3Kahraman F,Capar A,Ayvaci A,et al.Comparison of SVM and ANN performance for handwritten character classification[C]//Proceedings of the IEEE 12th 2004:615-618.
  • 4Deb K,Agrawal S,Pratap A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 5Harry C,Rughooputh S,Robert T,et al.Environmental/Economic Dispatch of Thermal Units using an Elitist Multiobjective Evolutionary Algorithm[C]//IEEE International Conference,2003:48-53.

二级参考文献9

  • 1于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 2Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 3Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 4Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 5Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 7Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.
  • 8徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273

共引文献101

同被引文献18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部