期刊文献+

基于谱图理论的流形学习算法 被引量:76

Manifold Learning Algorithms Based on Spectral Graph Theory
下载PDF
导出
摘要 流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行总结和对进一步的研究做了展望. In the problem of manifold learning, one seeks to find a smooth low-dimensional manifold embedded in the high-dimensional vector space, based on a set of sample points. Spectral graph theory studies the eigenvectors and eigenvalues of matrices associated with graphs and has been widely used in the manifold learning algorithm recently. In this paper, the relationship between the manifold and the manifold learning is introduced first, and then some typical manifold learning algorithms based on spectral graph theory are studied. Finally, some directions for further research are suggested.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第7期1173-1179,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60373029) 国家教育部博士学科点基金项目(20050004001) 北京市重点学科共建基金项目(XK100040415)
关键词 流形学习 谱图理论 局部切空间 随机游走 特征映射 manifold learning spectral graph theory local tangent space random walk eigenmaps
  • 引文网络
  • 相关文献

参考文献43

  • 1H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 2Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 3J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 4F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 5B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319
  • 6T. Hastie, W. Stuetzle. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406) : 502-516
  • 7张军平,王珏.主曲线研究综述[J].计算机学报,2003,26(2):129-146. 被引量:62
  • 8T. Cox, M. Cox. Multidimensional Scaling [M]. London:Chapman & Hall, 1994
  • 9J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction [J].Science, 2000, 290(12): 2319-2323
  • 10M. Balasubramanian, E. L. Schwartz. The isomap algorithm and topological stability [J]. Science, 2002, 295(5552): 7

二级参考文献64

  • 1Golub G, Van Loan C. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996.
  • 2Teh Y, Roweis S. Automatic alignment of hidden representations. Neural Information Processing Systems,2003, 15:841-848.
  • 3Bishop C M, Svensen M, Williams C K I. GTM: the generative topographic mapping. Neural Computation, 1998, 10: 215-234.
  • 4Freedman D. Efficient simplicial reconstructions of manifolds from their samples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24:1349-1357.
  • 5Hinton G, Roweis S. Stochastic neighbor embedding. Neural Information Processing Systems, 2003, 15:833-840.
  • 6Kohonen T. Self-organizing Maps. 3rd ed. Berlin: Springer-Verlag, 2000.
  • 7Ramsay J O, Silverman B W. Applied Functional Data Analysis. Berlin: Springer, 2002.
  • 8Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290:2323-2326.
  • 9Tenenbaum J, De Silva V, Langford J. A global geometric framework for nonlinear dimension reduction.Science, 2000, 290:2319-2323.
  • 10Xu G, Kailath T. Fast subspace decomposition. IEEE Transactions on Signal Processing, 1994, 42:539-551.

共引文献102

同被引文献867

引证文献76

二级引证文献364

;
使用帮助 返回顶部