期刊文献+

一类带弱奇异核的偏积分微分方程的数值解

The Numerical Solution for a Partial Integro-differential Equation with a Weakly Singular Kernel
下载PDF
导出
摘要 给出了数值求解一类偏微分方程的一种一阶全离散格式。x方向采用Galerkin谱方法,t方向用拉普拉斯的数值逆求解。该方法选择适当的n可以达到所需要的精度。 AIn this paper, a first order fidly discrete method of a partial integro - differential equation is con sidered. This article presents the Galerkin spectral method in the direction of x , but applies the inversion technique for the Laplace transfoml in the direction of t. We can get the precision we need with this method through a proper n.
出处 《上饶师范学院学报》 2006年第3期12-16,共5页 Journal of Shangrao Normal University
基金 国家自然科学基金资助(10271046)
关键词 拉普拉斯变换 数值逆 Galerkin谱方法 偏微分方程 Laplace transform inversion technique galerkin spectral method partial differential equation
  • 相关文献

参考文献5

  • 1D.L.Jagerman. An Inversion Technique for the Laplace Transform with Application to Approximation[J]. B.S.T.J., 1978, (3):669-710.
  • 2D.L.Jagerman. An Inversion Technique for the Laplace Transform[J], B.S.T.J.1982,61(8): 1995-2002.
  • 3P.P.Korovkin. Linear Operations and Approximation Theory[M]. New York:Gordon and Breach, 1960.
  • 4W.McLaan and V.Thomee. Time Discretization of an Evolution Equation via Laplace Transforms[J]. AMR,2003, (7):1-27.
  • 5杨晓霖,徐大.拉普拉斯变换的数值逆在微分方程中的应用[J].湖南师范大学自然科学学报,2004,27(2):21-25. 被引量:13

二级参考文献6

  • 1PALEY R E,WEINER N. Fourier transforms in the complex domain,american mathematical society(Vol.XIX)[M].New York:Colloquium Publications,1934.
  • 2KOROVKIN P P. Linear operations and approximation theory[M]. New York:Cordon and Breach,1960.
  • 3FELLER W. An introduction to probability theory and its applications(Vol.II)[M].New York:John Wiley & Sons,1965.
  • 4JAGERMAN D L.An inversion technique for the laplace transfom with application to approximation[J]. B S T J,1978,(3):669-710.
  • 5JAGERMAN D L.An inveresion technique for the laplace transform[J]. B S T J,1982,(8):1 995-2 002.
  • 6胡健伟 汤怀民.微分方程数值方法[M].北京:科学出版社,2001.10-17.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部