期刊文献+

开关磁阻电机神经网络自适应PWM转速控制 被引量:14

Neural Network Based Adaptive PWM Speed Control in Switched Reluctance Motors
下载PDF
导出
摘要 开关磁阻电机调速系统(SRD)作为1种交流无级调速系统以其宽广的调速范围和优越的调速性能而倍受关注。但由于开关磁阻电机高度的非线性和多变量的特点,很难建立其精确的数学模型,使得SRD的控制存在较大难度。针对这一问题,提出1种基于径向基函数(radial basis function, RBF)神经网络的开关磁阻电机自适应PWM转速控制方法。该方法利用RBF神经网络极强的逼近能力和快速的收敛性,将离线训练好的网络构成转速控制器,并结合网络的在线训练,让控制器在电机运行中自适应地调节网络参数,使之适应环境的变化。同时构造另一个RBF网络对控制对象进行在线辨识,为控制网络的在线学习提供所需的梯度参数。通过实验,证明了该方法具有响应速度快、控制精度高、适应性强等优点。 The switched reluctance motor drive(SRD) has obtained great attention as an AC stepless speed control system due to its large scale regulating scope, low cost and ruggedness. However, its strong nonlinearity and multivariable characteristic make it difficult to control. To solve this problem, this paper presents an approach of adaptive pulse width modulation(PWM) speed control for switched reluctance motors based on RBF neural network. This method builds up a speed controller based on RBF neural network which has powerful approximating ability and fast convergence property. After being trained off-line, the speed controller regulates network's parameters at running to adapt the environment under the training on-line. In addition, another RBF network is constructed to offer gradient parameters, which is needed by the on-line training, via on-line identification. The results of experiments prove that the approach has lots of advantages in response speed, control accuracy and adaptability.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第13期141-145,共5页 Proceedings of the CSEE
基金 天津市自然科学基金项目(06YFJMJC01900)。
关键词 开关磁阻电机 径向基函数神经网络 电压脉宽调制 在线辨识 正交最小二乘法 switched reluctance motor radial basis function neural network pulse width modulation on-line identification orthogonal least squares algorithm
  • 相关文献

参考文献14

  • 1Ilic'-spong M,Marino R,Peresada S M,et al.Feedback linearization control of a switched reluctance motor[J].IEEE Transactions on Automatic Control,1987,32(5):371-379.
  • 2Ge B M,Wang X H,Su P S,et al.Nonlinear internal-model control for switched reluctance drives[J].IEEE Transactions on Power Electronics,2002,17(3):379-388.
  • 3Buja G S,Menis Robert,Valla M I.Variable structure control of an SRM drive[J].IEEE Transactions on Industrial Electronics,1993,40(1):56-63.
  • 4Mir S,Elbuluk M E,Husain I.Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control[J].IEEE Transactions on Industry Applications,1999,35(2):461-468.
  • 5王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:178
  • 6夏长亮,文德,范娟,杨晓军.基于RBF神经网络的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(3):26-29. 被引量:81
  • 7何玉彬,王晓予,闫桂荣.神经网络在线学习模糊自适应控制及其应用[J].中国电机工程学报,2000,20(10):67-70. 被引量:10
  • 8Rehman K M,Suresh G,Fahimi B,et al.Optimized torque control of switched reluctance motor at all operational regimes using neural network[J].IEEE Transactions on Industry Applications,2001,37(3):904-913.
  • 9Rajarathnam A V,Fahimi B,Ehsani M.Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere[C].IEEE Industry Application Society Annual Meeting,New Orlaeans,Louisiana,1997.
  • 10夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128. 被引量:71

二级参考文献43

  • 1夏长亮,祁温雅,杨荣,史婷娜.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报,2004,19(9):18-22. 被引量:13
  • 2金耀初,蒋静坪.最优模糊控制的两种设计方法[J].中国电机工程学报,1996,16(3):201-204. 被引量:22
  • 3王永冀 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 4[1]Carlson R,Lajoie-Mazenc M,Fagundes J.Analysis of torque ripple due to phase commutation in brushleses DC machines[J]. IEEE Trans on Industry Application,1992,28(3):632-638.
  • 5[2]Batzel T D,Lee K Y.Commutation torque ripple minimization for permanent magnet synchronous machines with hall effect position feedback[J]. IEEE Trans on Energy Conversion,1998,13(3):257-262.
  • 6[3]Park S J,Park H W,Lee M H,et al. A new approach for minimum torque ripple maximum efficiency control of BLDC motor[J]. IEEE Trans on Industry Electronics,2000,47(4):109-113.
  • 7[4]Kim Y,Kook Y,Ko Y. A new technique of reducing torque ripples for BDCM drives [J]. IEEE Trans on Industrial Electronics. 1997,44(5):735-739.
  • 8[5]Fukuda T,Shibata T.Theory and application of neural networks for industrial control system[J].IEEE Trans on Industrial Electronics,1992,39(6):432-489.
  • 9[6]Ahmed R,Kotaru,Raj. Neural net-based robust controller design for brushless dc motor drives[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,1999,29(3):460-474.
  • 10Johnson J P, Ehsani M, Guzelgunler Y. Review of sensorless methods for brushless DC[C].IEEe Thirty-Fourth IAS Annual Meeting, 1999.

共引文献516

同被引文献119

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部