期刊文献+

模块二维主成分分析——人脸识别新方法 被引量:10

Modular Two Dimensional Principal Component Analysis——A Novel Method for Human Face Recognition
下载PDF
导出
摘要 提出了模块二维主成分分析(M2DPCA)线性鉴别分析方法。M2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能有效地降低模式原始特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,2DPCA是M2DPCA的特例。在ORL人脸库上试验结果表明,M2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 This paper presents modular two dimensional principal component analysis (M2DPCA)——a novel technique for human face recognition. First, the original images are divided into sub-images images in proposed approach. Then, the well-known 2DPCA method can be directly used to the sub-images obtained from the previous step. There are two advantages for this way: (1)dimension reduction of original pattern features can be done efficiently; (2)singular value decomposition of matrix is absolutely avoided in the process of feature extraction so the discriminant features can be gained easily. Moreover, 2DPCA is the special case of M2DPCA. To test and to evaluate the performance of M2DPCA, a series of experiments are performed on ORL human face image database. The experimental results indicate that the recognition performance of M2DPCA is superior to that of PCA and is robust than that of 2DPCA at the same time.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第14期179-180,183,共3页 Computer Engineering
基金 国家自然科学基金(60472060) 江苏省自然科学基金(05KJD520036)
关键词 线性鉴别分析 特征抽取 特征矩阵 人脸识别 Linear discriminant analysis Feature extraction Feature matrix Face recognition
  • 相关文献

参考文献9

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2Hong Z Q,Yang J Y.Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane[J].Pattern Recognition,1991,24(4):317-324.
  • 3Liu K,Yang J Y.An Efficient Algorithm for Foley-sammon Optimal Set of Discriminant Vectors by Algebraic Method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817-829.
  • 4Chen Lifen,Liao H Y,Ko M T,et al.A New LDA-based Face Recognition System Which Can Solve the Small Sample Size Problem[J].Pattern Recognition,2000,33(10):1713-1726.
  • 5Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data -with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 6杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 7Liu K,Cheng Y Q,Yang JY,et al.Algebraic Feature Extraction for Image Recognition Based on An Optimal Discriminant Criterion[J].Pattern Recognition,1993,26(6):903-911.
  • 8杨健,杨静宇,等.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447-452. 被引量:39
  • 9Yang Jian,Zhang David,Yang Jingyu.Two-dimensional PCA:A New Approach to Appearance-based Face Representation and Recognition[J].IEEE Trans.on Pattern Anal.Machine Intell.,2004,26(1):131-137.

二级参考文献27

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献132

同被引文献80

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部