期刊文献+

SCE-UA算法在TOPMODEL参数优化中的应用 被引量:49

Application of SCE-UA algorithm to optimization of TOPMODEL parameters
下载PDF
导出
摘要 以江西修水万家埠流域为例,用SCE-UA算法对TOPMODEL参数进行了优化,并对优化结果进行了检验.结果表明:SCE-UA算法不仅可以用于概念性水文模型和分布式水文模型,还可以用于半分布式水文模型———TOPMODEL;TOPMODEL参数上下边界需根据参数的物理意义和研究流域特性来确定;在SCE-UA算法中,目标函数的建立对于参数优化具有重要作用,在次洪模拟时,目标函数应突出高水过程和洪峰对模拟效果的影响;SCE-UA算法的绝大部分参数取值都可以采用已有研究成果的默认值,只有复合型个数p需要根据具体问题确定. A case study was performed for Wanjiabu catchment of Jiangxi Province, and the result of parameter optimization by use of SCE-UA algorithm shows that the algorithm is applicable not only for the conceptual hydrological model and distributed hydrological model, but also for the semi-distributed hydrological model TOPMODEL. The upper and lower boundaries of TOPMODEL parameters should be determined according to their physical meanings and the characteristics of the catchment to be studied. In SCE-UA algorithm, the establishment of the objective function is important for parameter optimization, and the effects of high-water flood process and flood peak should be emphasized in the establishment of the objective function for flood simulation. Most parameters in SCE-UA algorithm can take default values from the former study, while the number of complexes should be determined based on specific issues.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期361-365,共5页 Journal of Hohai University(Natural Sciences)
关键词 水文模型 SCE-UA算法 TOPMODEL 参数率定 hydrological model SCE-UA algorithm TOPMODEL parameter calibration
  • 相关文献

参考文献8

  • 1VIJAY P S. Compuer models of watershed hydrology[M]. Highlands Ranch:Water Resources Publication, 1995:23-68.
  • 2DUAN Q, GUPTA V K, SOROOSHIAN S. Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications, 1993,76(3) :501-521.
  • 3DUAN Q, SOROOSHIAN S, GUPTA V K. Optimal use of the SCE-UA optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994,158 : 265-284.
  • 4ECKHARDT K, AMOLD J G. Automatic calibration of a distributed catchment model[J]. Journal of Hydrology, 2001,251 : 203-209.
  • 5NEWSHA K A, GUPTA H, WAGENER T, et al. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system[J]. Journal of Hydrology,2004,298:112-135.
  • 6李致家,周轶,哈布.哈其.新安江模型参数全局优化研究[J].河海大学学报(自然科学版),2004,32(4):376-379. 被引量:35
  • 7BEVEN K J, KIRKBY M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Bulletin, 1979,24: 43-69.
  • 8QUINN P, BEVEN K, CHEVALLIER P, et al. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models[J]. Hydrological Processes, 1991, 5:59-79.

二级参考文献4

  • 1DUAN Q,SOROOSHIAN S,GUPTA V K. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resource Research,1992,28(4):1015-1031.
  • 2DUAN Q,SOROOSHIAN S,GUPTA V K. Optimal use of SCE-UA global optimization method for calibrating watershed models[J].Journal of Hydrology,1994,158(1):265-284.
  • 3ZHAO R J. The Xinanjiang Model applied in China[J].Journal of Hydrology,1992,135(4):371-381.
  • 4ROSENBROCK H H.An automatic method of finding the greatest or least value of a function[J].Computer Journal,1960,3:175-184.

共引文献34

同被引文献502

引证文献49

二级引证文献449

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部