期刊文献+

基于神经网络的开关磁阻电机自适应控制 被引量:3

Adaptive Control for Switched Reluctance Motors Based on Neural Network
下载PDF
导出
摘要 针对开关磁阻电机显著的非线性特性,将具有非线性映射能力及自适应能力的误差反向传播(BP)神经网络应用于开关磁阻电机驱动系统(SRD),并结合传统比例、积分和微分(PID)控制的优点,提出一种基于BP神经网络的开关磁阻电机在线辨识与自适应PID控制方法.该方法利用BP神经网络实时观测系统输出,优化PID控制参数,对于解决开关磁阻电机由于非线性严重而导致控制困难的问题具有较强的针对性.实验结果证明了该方法的有效性,且系统适应性强,稳定性好,响应速度和控制精度均令人满意. Aiming at the nonlinear electromagnetic characteristic of switched reluctance motor (SRM), the strong points of back propagation ( BP ) neural network and traditional proportional, integral and differential (PID) controller are combined, and then a new control solution, adaptive PID control and on-line identification based on BP neural network, is presented. This method uses BP neural network, which has powerful nonlinear mapping and self-adaptation capabilities, to realize real-time observation of the output of the system, and online adjustment to the parameters of PID controller. With the proposed method, satisfactory response speed and precision as well as good robustness and stable performance were obtained by experiments.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第8期918-922,共5页 Journal of Tianjin University(Science and Technology)
基金 天津市自然科学基金(06YFJMJC01900).
关键词 开关磁阻电机 自适应控制 神经网络 PID 在线辨识 switched reluctance motor adaptive control neural network PID on-line identification
  • 相关文献

参考文献12

  • 1Lawrenson P J, Stephenson J M, Blenkinsop P T, et al.Varibale-speed switched reluctance motors [J]. Proc Inst Elect Eng, 1980,127 (4) :253-265.
  • 2夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128. 被引量:71
  • 3Hossain S A, Husain I. Outer loop controller design of a switched reluctance motor driven system [C]//Industry Applications Conference. Salt Lake City, USA, 2003:486-491.
  • 4Rahman A S B F, Taib M N B. Simulation of PID and fuzzy logic controller for the newly developed switched reluctance motor program [C] //Research and Development, SCORED.Malaysia,2002 : 49-53.
  • 5Zhu X M, Panda S K, Dash P K, et al. Experimental investigation of variable structural PID control for switched reluctance motor drives [C]//IEEE Proceeding of the International Conference on Power Electronics and Drive Systems.Hong Kong, 1997:205-210.
  • 6Marija Ilic' spong, Marino R, Peresada S M, et al. Feedback linearization control of a switched reluctance motor[J]. IEEE Transactions on Automatic Control, 1987,32 :371-379.
  • 7Berger M. Self-tuning of a PI controller using fuzz), logic for a construction unit testing apparatus [J]. Control Eng Practice, 1996, 4:785-790.
  • 8刘剑,吴成东,梁延东.神经元自适应PID控制在开关磁阻电机中的应用[J].微特电机,2002,30(5):13-14. 被引量:2
  • 9Trifa V, Gaura E, Moldovan L. Neuro-control approach of switched reluctance motor drives [C]//Electrotechnical Conference. Mediterranean, 1996 : 1461-1464.
  • 10Garside J J, Brown R H, Arkadan A A. Switched reluctance motor control with artificial neural networks [C]//Electric Machines and Drives Conference Record. Milwaukee, USA,1997 :TB1/2.1-TB1/2.3.

二级参考文献15

  • 1夏长亮,祁温雅,杨荣,史婷娜.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报,2004,19(9):18-22. 被引量:13
  • 2孙增圻,智能控制理论与技术,1997年
  • 3Krishnan R. Sensorless operation of SRM drives: R & D status[C]. Denver, CO USA: IEEE Industrial Electronics Society Annual Conference, 2001.
  • 4Xu Longya, Wang Chuanyang. Accurate rotor position detection and sensorless control of SRM for super-high speed operation[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 757-763.
  • 5Bellini A, Flipetti F, Franceschini G et al. Position sensorless control of a SRM drive using ANN-techniques[C]. St. Louis, MO USA: IEEE Industry Applications Society Annual Meeting, 1998.
  • 6Mese E, Torry D A. An approach for sensorless position estimation for switched reluctance motors using artificial neural networks[J]. IEEE Transaction on Power Electronics, 2002, 17(1): 66-75.
  • 7Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on matlab/simulink environment[J]. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(3): 989-1009.
  • 8Cui Yulong, Wnag Xiang, Liu Chaoying et al. The simulation study of the switched reluctance motor's nonlinearized model[C]. Xi'an:IEEE Proceeding of the Second International Conference on Machine Learning and Cybernetics, 2003.
  • 9王旭东,张弈黄,王喜莲,王炎.无位置传感器开关磁阻电动机位置的检测与预报[J].中国电机工程学报,2000,20(7):5-8. 被引量:25
  • 10王上飞,汤汇道.自适应径向基函数神经网络[J].合肥工业大学学报(自然科学版),2001,24(2):244-247. 被引量:11

共引文献77

同被引文献35

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部