期刊文献+

自适应二次变异差分进化算法 被引量:80

Differential Evolution Algorithm with Adaptive Second Mutation
下载PDF
导出
摘要 提出一种基于群体适应度方差自适应二次变异的差分进化算法.该算法在运行过程中根据群体适应度方差的大小,增加一种新的变异算子对最优个体和部分其他个体同时进行变异操作,以提高种群多样性,增强差分进化算法跳出局部最优解的能力.对几种典型B enchm arks函数进行了测试,实验结果表明,该方法能有效避免早熟收敛,显著提高算法的全局搜索能力. A new adaptive second mutation differential evolution algorithm (ASMDE) based on the variance of the population's fitness is presented. In order to improve the population's diversity and the ability of breaking away from the local optimum, according to the value of the variance of the population's fitness during the running time, a new mutation operator is adapted to mutate both the best individual and partial other individuals. Several classic Benchmarks functions are tested and the results show that the proposed algorithm can avoid the premature convergence and improves the global convergence ability remarkably.
出处 《控制与决策》 EI CSCD 北大核心 2006年第8期898-902,共5页 Control and Decision
基金 国家自然科学基金项目(60375001) 高校博士点基金项目(20030532004)
关键词 差分进化 自适应二次变异 时变概率 早熟收敛 Differential evolution Adaptive second mutation Time varying probability Premature convergence
  • 相关文献

参考文献7

  • 1Price K. Differential Evolution,, A Fast and Simple Numerical Optimizer [A]. 1996 Biennial Conf of the North American Fuzzy Information Processing Sociey[C]. New York, 1996:524-527.
  • 2Price K. Differential Evolution vs, the Functions of the 2nd ICEO [A]. IEEE Int Conf on Evolutionary Computation [C]. Indianupolis, 1997:153-157.
  • 3Ji-Pyng Chiou, Feng-Sheng Wang. A Hybrid Method of Differential Evolution with Application to Optimal Control Problems of a Bioprocess System[A]. IEEE Int Conf on Evolutionary Computation Proceedings[C]. New York, 1998:627-632.
  • 4Junhong Liu, Jouni Lampinen. A Fuzzy Adaptive Differential Evolution Algorithm[A]. IEEE Region 10 Conf on Computers, Communications, Control and Power Engineering [C]. Beijing, 2002 : 606-611.
  • 5谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 6Rainer S, Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces [J]. J of Global Optimization,1997,11 (4) : 341-359.
  • 7吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:452

二级参考文献14

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 3[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 4[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 5[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 6[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 7[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.
  • 8[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273.
  • 9[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 10[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051.

共引文献519

同被引文献796

引证文献80

二级引证文献669

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部