期刊文献+

基于独立分量分析特征提取的故障诊断系统 被引量:4

Fault diagnosis system based on ICA feature
下载PDF
导出
摘要 针对矿山破碎机的声音故障诊断受复杂现场环境制约、确诊率低的难题,结合独立分量分析(ICA)在自然图像和连续语音信号中特征提取的方法,采用两层ICA分别用于从混杂声音中提取各采集通道(部位)的统计独立声音信号和进一步提取该信号的特征基.训练阶段生成的特征基系数序列用来生成矢量量化(VQ)的码书,设计出ICA-VQ破碎机故障诊断系统.现场采集数据的实验中系统的故障诊断准确率达到96.8%,表明系统的高效性. To overcome the difficulty of complex background in mining machine fault diagnosis, a fault diagnosis system based on independent component analysis (ICA) and vector quantization (VQ) was developed. A fault sound ICA model was presented to get the fault sound feature bases with ICA algorithms in extracting nature images and continuous speech features. One ICA separated the sounds from different parts of the machine and the other extracted the feature basis of fault sound. The coefficients of the basis were used in designing codebooks. The diagnosis accuracy of this system is 96.8 % in the experiment with the realistic mine machine fault data, so the ICA-VQ is a high efficient fault diagnosis system.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第7期700-703,共4页 Journal of University of Science and Technology Beijing
关键词 独矿分量分析 矢量量化 模式识别 故障诊断 失真测度 independent component analysis vector quantization pattern recognition fault diagnosis distortion measurement
  • 相关文献

参考文献12

  • 1屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,11(1):211-216. 被引量:75
  • 2王锋,屈梁生.用遗传编程方法提取和优化机械故障的声音特征[J].西安交通大学学报,2002,36(12):1307-1310. 被引量:6
  • 3徐光华,贾维银,侯成刚,梁霖,刘弹.基于轨迹平行测量的发动机异响诊断方法[J].西安交通大学学报,2002,36(5):519-522. 被引量:4
  • 4Ypma A,Pajunen P.Rotating machine vibration analysis with second-order independent component analysis ∥ Proceeding of the Workshop on ICA and Signal Separation.France:Aussois,1999:37
  • 5Ypma A,Tax D M J,Duin R P W.Robust machine fault detection with independent component analysis and support vector data description ∥Proceeding of IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing.Wisconsin:Madison,1999:67
  • 6Ypma A,Leshem A.Blind separation of machine vibration with bilinear forms ∥ Proceeding of the 2nd International Workshop on ICA and Signal Separation.Finland:Helsinki University of Technology,2000:405
  • 7Ypma A,Leshem A,Duin R P W.Blind separation of rotating machine sources:bilinear forms and convolutive mixtures.Neurocomputing,2002,49(1/4):349
  • 8Gelle G,Colas M,Serviere C.Blind source separation:a tool for rotating machine monitoring by vibration analysis.J Sound Vib,2001,248(5):865
  • 9Ekenel H,Sankur B.Feature selection in the independent component subspace for face recognition.Pattern Recognit Lett,2004,(25):1377
  • 10Jang G J,Lee T W,Oh Y H.Learning statistically efficient features for speaker recognition ∥ Proceeding of ICASSP.Salt Lake City:Utah,2001:1581

二级参考文献12

共引文献82

同被引文献36

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部