期刊文献+

双材平面中环形界面环向裂纹问题的超奇异积分方程方法 被引量:4

HYPERSINGULAR INTEGRAL EQUATION METHOD FOR A CIRCULAR CRACK IN A BIMATERIAL PLANE WITH A CIRCULAR INTERFACE
下载PDF
导出
摘要 从研究环形界面双相材料平面任点处沿径向、环向作用单位力时的弹性力学基本解出发,利用Betti定律、几何关系和虎克定律得到双材料平面环向裂纹问题的位移场和应力场表达式,经代入裂纹岸应力边界条件,导出极坐标下以裂纹岸位移间断为基本未知量的超奇异积分方程组;通过适当的积分变换,用有限部积分原理处理方程组中所包含的两类奇异积分—Cauchy奇异积分和超奇异积分,解决极坐标下环形界面双材料平面环向裂纹问题用超奇异积分方程法的理论描述与数值算法。在嵌入物半径足够大时,计算结果与已发表文献对直线界面情况下平行于界面裂纹问题的计算结果一致。 According to the study for the fundamental solution of elasticity on a bi-material plane with the circular interface subjected to the radial and circular unit concentrated forces, the stresses and displacements of the problem about the circular crack are derived by use of Betti' s reciprocal theorem, geometric relationship and Hooker' s law. Considering the stress boundary conditions of the problem, the equations to describe this crack problem are derived, in which the unknown functions are the displacement discontinuities on the crack surface. Cauchy singular integral and hypersingular integrals contained in the equations are calculated by the finite-port integral principles, then a numerical method is first established to solve the problem of a circular crack contained in the bi-material plane with circular interface in the polar coordinate. Finally, the non-dimensional stress intensity factors of the crack under the uniform pressure are calculated for various parameters, such as the crack position c, the radius r0 of interface, and so on. When r0 is sufficiently large, the calculated results by the present method are consistent with those published in literature for the line crack parallel to the interface.
出处 《机械强度》 EI CAS CSCD 北大核心 2006年第5期733-738,共6页 Journal of Mechanical Strength
关键词 双相材料 极坐标 环向裂纹 超奇异积分方程 应力强度因子 Bimaterial Polar co-ordinate Circular crack Hypersingular integral equation Stress intensity factor
  • 引文网络
  • 相关文献

参考文献13

二级参考文献39

  • 1Zhou Wangmin,Fan Tianyou,Yin Shuyuan.AXISYMMETRIC CONTACT PROBLEM OF CUBIC QUASICRYSTALLINE MATERIALS[J].Acta Mechanica Solida Sinica,2002,15(1):68-74. 被引量:14
  • 2潘井澜.爆破破岩机理的探讨[J].爆破,1994,11(4):1-6. 被引量:33
  • 3丁棣华,王仁卉,杨文革,胡承正.十次对称准晶中直位错的弹性位移场[J].武汉大学学报(自然科学版),1994,40(5):59-64. 被引量:2
  • 4[3]Ioakimidis N I. Application of finite-part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity[J]. Acta Mech.,1982,45(5):31~47
  • 5[4]Qin T Y,Noda N A. Analysis of a three-dimensional crack terminating at an interface using a hypersingular integral equation method[J]. J. Appl. Mech.,ASME,2002,69(3):626~631
  • 6[7]Dundurs J,Hetenyi M. The elastic plane with a circular insert,loaded by a radical force[J]. J. Appl. Mech.,ASME,1961,28(1):103~112
  • 7[8]Hetenyi M,Dundurs J.,The elastic plane with a circular insert,loaded by a tangentially directed force[J]. J. Appl. Mech.,ASME,1962,29(2):362~368
  • 8[10]Chan Y S,Fannjiang A C,Paulino G H. Integral equations with hypersingular kernels-theory and application to fracture mechanics[J]. International Journal of Engineering Science,2003,41(7):683~720
  • 9[11]Chen Y Z. Multiple crack problems of anti-plane elasticity in an infinite body[J]. Engrg. Fracture Mech.,1984,20(5/6):767~775
  • 10HAGAN T N.Rock breakage by explosives[A].The Sixth International Colloquium on Gas Dynamics of Explosions and Reactive Systems[C].Great Brifian:Pergamon Press.1979,329—340.

共引文献27

同被引文献36

  • 1乐金朝,杜云海,万强,朱秋菊.双材料平面多裂纹问题的超奇异积分方程方法[J].岩石力学与工程学报,2004,23(22):3834-3839. 被引量:4
  • 2乐金朝 冯新 韩连元.双材料平面裂纹问题的超奇异积分方程方法[J].固体力学学报,1999,20:34-37.
  • 3IOAKIMIDS N I. A natural approach to the introduction of finite-part integrals into crack problems of 3-dimensional elasticity [J].Eng Fracture Meck, 1982,16:669-673
  • 4ERDOGAN F, GUPTA G D, RATWANI M. Interaction between a circular inclusion and an arbitrarily oriented crack[J]. Journal of Applied Mechanics (ASME), 1974, 41:1007-1011.
  • 5DONG C Y, LEE K Y. A new integral equation formulation of two-dimensional inclusion-crack problems [J]. International Journal of Solid and Structure, 2005,42:5010-5020.
  • 6CHAN Y S, FANNJIANG A C, PAULINO G H. Intergral equations with hypersingular kernels-theory and applications to fracture mechanics[J]. International Journal of Engineering Science, 2003, 41: 683-720.
  • 7ISIDA M,NOGUCHI H.An arbitrary array of cracks in bonded semi-infinite bodies under in-plane loads[J].Trans.JSME,1983,49:36-45.
  • 8DONG C Y,LEE K Y.A new integral equation formulation of two-dimensional inclusion-crack problems[J].International Journal of Solid and Structure,2005,42:5010-5020.
  • 9KAYA A C,ERDOYAN F.On the solution of integral equations with strongly singular kenels[J].Quarterly of Applied Mathematics,1987 (A5):105-122.
  • 10MARTIN P A,IZZO F J R.On boundary integral equations for crack problems[J].Proc.R.Soc.Lond,1988,421:341-355.

引证文献4

二级引证文献4

;
使用帮助 返回顶部