期刊文献+

一种求解时变网络下多式联运最短路的算法 被引量:31

An Algorithm for Shortest Path with Multi-Modal in Time-Varying Network
下载PDF
导出
摘要 在运输过程中,往往不止有一种运输方式,可能同时有多种运输方式交叉,即可能多式联运的方式存在,不同的运输方式之间需要通过转运才可实现。同时,在运输过程中,成本、运输时间、风险等因素会随着时间的不同而变化。首先,将运输网络进行变形,然后给出了在时变网络条件下多式联运的最短路模型,设计了求解时变条件下多式联运的最短路的算法,利用此算法可以获得从起点到终点之间的最短路,并对算法的计算复杂性进行了分析。最后给出一个应用算例。 In the transportation, there are many modes, such as truck, train, waterway, airplane and so on. The different mode has the different cost, but the different modes want to transship. Thus, there exists the transshipment in transportation. The paper wants to find the shortest path with multiple modes in the timevarying network. The problem also has constraints to the time and to the destination. In order to solving the problem, we transformed the transportation network and analyzed the transportation cost and transshipment cost. Then, we developed the label algorithm to the problem and gave the computational complexity of the algo- rithm. At last, a case was studied.
出处 《中国管理科学》 CSSCI 2006年第4期56-63,共8页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70471039) 教育部新世纪优秀人才支持计划项目(NCET-04-0886)
关键词 最短路 时变网络 多式联运 转运 成本 shortest path time- varyinig network multiple modes transshipment cost
  • 相关文献

参考文献15

  • 1E.W.Dijkstra.A note on two problems inconnection with graphs[J].Numer.Math.,1959,1:269-271.
  • 2李引珍,郭耀煌.交通运输网络最短路径关键边问题研究[J].中国管理科学,2004,12(4):69-73. 被引量:28
  • 3李帮义,盛昭翰.目标函数为∑和max的双目标最短路问题:算法和复杂性[J].中国管理科学,2003,11(5):37-41. 被引量:3
  • 4National Commission on IntermodalTransportation,Toward a National IntermodalTransportation System[R].Final Report to Congress,US DOT,Washington,DC,1994.
  • 5Rawlings,One System,Many Partners:Reflections of the Chicago Area TransportationStudy's Intermodal Advisory Task Force[R].1997,97-17.
  • 6张得志,凌春雨.多种运输方式的组合优化模型及求解算法[J].长沙铁道学院学报,2002,20(4):71-75. 被引量:46
  • 7Angelica Lozano,Giovanni Storchi.Shortestviable path algorithm in multimodal networks[J].Transportation Research,Part A,2001,35:225-241.
  • 8Modesti,Sciomachen.A utility measure forfinding multiobjective shortest paths in urban multimodal transportation networks[J].European Journal of Operational Research,1998,111:495-508.
  • 9Angelica Lozano,Giovanni Storchi,Shortestviable hyperpath in multimodal networks[J].Transportation Research,Part B,2002,36:853-874.
  • 10Elise D.M.,Hani S.M..Least possible timepaths in stochastic,time-varying networks[J].Computers and Operations Research,1998,25(12):1107-1125.

二级参考文献23

  • 1刘家壮 王建方.网络最优化[M].武汉:华中工学院出版社,1986..
  • 2严蔚敏 等.数据结构[M].北京:清华大学出版社,1995..
  • 3X Cai,T Kloks,C K Wong. Time-Varying Shortest Path problems with Constraints[ J ]. Networks, 1997,29:141 - 149.
  • 4G Yu, J Yang. On the robust shortest path problem [ J ] .Computers Ops Res, 1998,25:457 - 468.
  • 5P Hansen, M L Zheng. Shortest shortest tree of a network[J]. Discrete Applied Mathematics, 1996,65:275 - 284.
  • 6G Y Handler, I Wang, A Dual Algorithm for the Constrained Shortest Path Problem[ J ]. Networks 1980,10 : 293- 310.
  • 7J Mote, I Murthy, D L Olson, A Parametric Approach to Solving Bicriterion Shortest Path Problem [ J ] . European Journal of Operational Research, 1991,53 :81 - 92.
  • 8J R Current, C S Revelle, J L Cohon An Interactive Approach to Identify the Best Compromise Solution for Two Objective Shortest Path Problem [ J ] . Computers Opns Res, 1990,17 : 187 - 198.
  • 9O K Tayi,D J Kosenkrantz,S S Ravi.Path problem in networks with vector- valued degree weight [ J ]. Networks, 1999,34 : 19 - 35.
  • 10Duin C W, Volgenant A. Minimum deviation and balanced optimization: A Unified Approaeh [ J ] . Operation Researeh Letters, 1991,10:43 - 48.

共引文献73

同被引文献287

引证文献31

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部