期刊文献+

风光互补独立供电系统的优化设计 被引量:45

OPTIMAL DESIGN OF STANDALONE HYBRID WIND/PV POWER SYSTEMS
下载PDF
导出
摘要 在设计风光互补独立供电系统时,系统中需要优化的不仅有光伏电池和蓄电池的容量,还应该有风力发电机种类和容量以及光伏电池的倾角。优化目标为系统安装成本,约束条件为供电可靠性,其指标负载缺电率LP- SP需经仿真运行得到。本问题属于非线性整数规划,也是一个NP-hard问题。用包含精英策略的遗传算法优化,以自适应罚函数法处理约束。计算和验证表明本文采用的算法收敛,能同时优化风力发电机类型和容量、光伏电池的容量和倾角以及蓄电池的容量,并且计算效率高。 In the design of a standalone hybrid wind/PV power system, not only the size of photovoltaic (PV) panels and the capacity of batteries but also the type and size of wind turbine generators (WTGs) and the tilt angle of PV panels must be optimized. In our research, the objective is selected as minimizing the total capital cost, subject to power reliability. The Loss of Power Supply Probability (LPSP), which is the index of power reliability, is obtained by simulation. This may be defined as a nonlinear integer programming problem and characterized as an NP-hard problem. We investigated the genetic algorithm (GA) for optimally sizing a standalone hybreid wind/PV power system. The adaptive penalty function method dealing with the constraint and the elitist strategy are used. Studies have proved that the proposed GA converges well, can have decision variables as the type and size of WTGs, the size and tilt angle of VP panels and the capacity of batteries simuhaneously and has high computing efficiency.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2006年第9期919-922,共4页 Acta Energiae Solaris Sinica
关键词 可再生能源 独立供电系统 容量配置 遗传算法 自适应罚函数 renewable energy standalone power systems sizing genetic algorithms adaptive penalty function
  • 相关文献

参考文献13

  • 1Davis Amanda J.Distributed generation using small-scale hybrid wind/photovoltaic systems[D].UMI,No.9982884,2000.
  • 2Borowy Bogdan S,Salameh Ziyad M.Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J].IEEE Transaction on Energy Conversion,1996,11(2):367-375.
  • 3Willis H L,Scott W G.Distributed power generation:planning and evaluation[M].New York:Marcel Dekker,c2000.
  • 4Ai B,YangH,ShenH,etal.Computer-aided design of PV/wind hybrid system[J].Renewable Energy,2003,28:1491-1512.
  • 5徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598. 被引量:38
  • 6Garey M R,Johnson D S.Computers and intractability:a guild to the theory of NP-completeness[M].San Francisco:Freeman,1979.
  • 7Gen Mitsuo,Cheng Runwei.Genetic algorithms and engineering optimization[M].New York:Wiley-Interscience,1999.
  • 8(O)zgür Yeniay.Penalty function methods for constrained optimization with genetic algorithms[J].Mathematical and Computational Applications,2005,10(1):45-56.
  • 9Duffle John A,Beckman William A.Solar engineering of thermal processes[M].New York:Wiley,1991.
  • 10France Lasnier,Tony Gan Ang.Photovoltaic engineering handbook[M].Bristol,England:A Hilger,1990.

二级参考文献13

  • 1Willis H L,Scott W G.Distributed power generation:planning and evaluation[M].New York:Marcel Dekker,2000.
  • 2Ai B,Yang H,Shen H,Liao X.Computer-aided design of PV/wind hybrid system[J].Renewable Energy,2003,28:1491-1512.
  • 3Gen Mitsuo,Cheng Runwei.Genetic algorithms and engineering optimization[M].New York:Wiley-Interscience,1999.
  • 4Deb K.Multi-objective optimization using evolutionary algorithms[M].Chichester,England:John Wiley & Sons,2001.
  • 5Manwell J F,Rogers A,Hayman G,et al.Hybrid2:ahybrid system simulation model theory manual[R].National Renewable Energy Laboratory,1995.
  • 6Lasnier France,Ang Tony Gan.Photovoltaic engineering handbook[M].Bristol,England:A.Hilger,c1990.
  • 7Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal.A fast multiobjective genetic algorithms:NSGA-Ⅱ[J].IEEE Transaction on Evolutionary Computation,2002,6 (2):182-197.
  • 8Hartley L E,Martinez-Lozano J A,Utrilla M P,et al.The optimization of inclination of a solar collector to maximize the incident solar radiation[J].Renewable Energy,1999,17:291-309.
  • 9Marion William,Urban Ken.User's manual for TMY2s[R].National Renewable Energy Laboratory,1995.
  • 10Deb K,Mitra K,Dewri R,et al.Unveiling optimal operating conditions for an epoxy polymerization process using multi-objective evolutionary computation[C].Lecture Notes in Computer Science,2004,3103:920-931.

共引文献37

同被引文献396

引证文献45

二级引证文献489

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部