期刊文献+

椭圆曲线密码中标量乘算法的改进方案 被引量:7

Improvement Schemes for Scalar Multiplication Algorithm in Elliptic Curve Cryptography
下载PDF
导出
摘要 基于椭圆曲线密码,提出了一种快速标量乘算法。此算法通过引入有符号和无符号滑动窗口编码方法,大大减少了标量乘算法中费时的加法运算次数。经理论分析和实验结果表明,运用有符号滑动窗口编码方法比NAF算法和无符号窗口编码方法更有优势,可以使标量乘算法比通常的算法效率提高更多。并且给出了最佳滑动窗口的宽度。 This paper presents a new fast scalar multiplication algorithm on ellipic curve cryptography. This algorithm greatly reduces times of addition operation which takes time for scalar multiplication algorithm by introducing signed and unsigned sliding window coding methods. By theoretic analysis and experiment, signed sliding window coding method is better than NAF algorithm and unsigned sliding window coding method,and it is also able to improve the efficiency of scalar multiplication algorithm compared with accustomed algorithm. And the optimal sliding window width is given.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第17期28-29,43,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60473029)
关键词 椭圆曲线密码 标量乘 滑动窗口编码 NAF Elliptic curve cryptography Scalar multiplication Sliding window coding Non-adjacent form
  • 相关文献

参考文献7

二级参考文献11

  • 1黄铠 徐志伟.可扩展并行计算技术、结构与编程[M].北京:机械工业出版社,2000..
  • 2[1]Menezes A, Okamoto T, Vanstone S A. Reducing elliptic curve logarithm in a finite field. IEEE Transactions on Information Theory, 1993, IT-39(5): 1639~1646
  • 3[2]Semaev I. Evalution of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Math of Computation, 1998, 67: 353~356
  • 4[3]Satoh T, Araki K. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comm Math Univ Sancti Pauli, 1998, 47: 81~92
  • 5[4]Silverman J. The Arithmatic of Elliptic Curves. New York: Springer-Verlag, 1986
  • 6[5]Ruck H G. On the discrete logarithm in the divisor class group of curves. Math of Computation, 1999, 68: 805~806
  • 7[2]N Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 1987, 48(177): 203~209
  • 8[3]Shi Ronghua. A redundant binary algorithm for RSA. Journal of Computer Science & Technology, 1996, 11(4): 416~420
  • 9[4]A Menezes, S A Vanstone. Elliptic curve cryptosystems and their implementation. Journal of Cryptology, 1993, 6(4): 209~224
  • 10[5]J H Silverman. The Arithmetic of Elliptic Curves. New York: Springer-Verlag, 1986. 55~59

共引文献32

同被引文献43

  • 1宋磊,罗其亮,罗毅,涂光瑜.电力系统实时数据通信加密方案[J].电力系统自动化,2004,28(14):76-81. 被引量:30
  • 2牛广平,马建峰.椭圆曲线标量乘的快速实现[J].计算机工程,2004,30(16):45-46. 被引量:7
  • 3宋莹,高雪松,季晓勇.CPLD在DSP系统中的应用设计[J].电子技术应用,2004,30(8):65-66. 被引量:7
  • 4梁建霞,苏广川.基于GF(2^m)域上椭圆曲线数字签名的快速实现[J].计算机应用与软件,2005,22(4):96-98. 被引量:2
  • 5陶然,陈丽燕.椭圆曲线密码体制中点乘的快速算法[J].北京理工大学学报,2005,25(8):701-704. 被引量:1
  • 6Qiu Qizhi, Xiong Qianxing. Research on Elliptic Curve Cryptograph[C]//The 8th International Conference on Computer Supported Cooperative Work in Design Proceedings. 2004: 698-701.
  • 7Rahim Ali. Elliptic Curve Cryptography A New Way for Encryption[ C]//International Symposium on Biometric and Security Technologies. 2008: 1-5.
  • 8Wang Bangju, Zhang Huanguo, Wang Yuhua. An Efficient Elliptic Curves Scalar Multiplication for Wireless Network[ C]// 2007 IFIP Intermational Conference on Network and Parallel Computing Workshops. 2007: 131-134.
  • 9Mohamed A Fayed, Watheq M, Fayez Gebali. A High-speed, High-radix, Processor Array Architecture for Real-time Elliptic Curve Cryptography over GF(2m)[ C]//2007 IEEE International Symposium on Signal Processing and Information Technology. 2007: 56-61.
  • 10Koblitz N. Elliptic Curve Cryptosystems[J].Mathematics of Computation, 1987, 48(177) :203-209.

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部