期刊文献+

降序且保序的有限全变换半群(英文) 被引量:5

On the Semigroup of Order-decreasing and Order-preserving Finite Full Transformations
下载PDF
导出
摘要 设Jn为有限集X={1,2,…,n}上的全变换半群,Sn为Jn中所有奇异变换构成的子半群,记Sn-={f∈Sn:x∈X,f(x)≤x},Qn={f∈Jn:x,y∈X,x≤y f(x)≤f(y)},那么Sn-与Qn都是Tn的子半群,令Hn=S-n∩Qn,则Hn也是Jn的一个子半群,Hn的某些性质,诸如Green关系,Green星关系,秩和幂等秩都进行了研究,还证明了Hn是幂等元生成的,且可由J*中的n-1个幂等元生成. Let Tn be the full transformation semigroup on the finite set X = { 1,2,…,n} ,Sn be the subsemigroup of all singular transformations in Tn. Denote Sn = {f∈Sn :A↓∈Xnf(x) ≤x } , and On = {f∈Tn : A↓x, y ∈ X, x ≤ y implies f(x) ≤f(y) }. Then both S^- and On are subsemigroups of Tn. Let Hn = Sn- ∩ On. Some properties for Hn, such as, Green's relations,Green's starred relations,rank and idempotent rank,are observed. Among other things,it is shown that Hn is idempotent-generated and that it is generated by n - 1 idempotents in Jn-1.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2006年第4期373-377,433,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 Supported by NSF of Henan province(0511010200)
关键词 半群 变换 保序 降序 幂等元 semigroup transformation order-preserving order-decreasing rank idempotent
  • 相关文献

参考文献7

  • 1ABDULLAHI Umar.On the Semigroups of Order-decreasing Finite Full Transformations[J].Proc Roy Soc Edinburgh(S 0308-2105),1992,120A:129-142.
  • 2JOHN M Howie.Products of Idempents in certain Semigroups of Transformations[J].Proc Edinburgh Math Soc(S 0013-0915),1971,17(2):223-236.
  • 3GRACINDA M S Gomes,JOHN M Howie.On the Rank of Certain Semigroups of Order-preserving Transformations[J].Semigroup Forum(S 0037-1912),1992,45:272-282.
  • 4JOHN M Howie.Fundamentals of Semigroup Theory[M].Oxford University Press(0-19-851194-9),1995.
  • 5FOUNTAIN J B.Abundant semigroups[J].Proc London Math Soc(S 0024-6115),1982,44(3):3,103-129.
  • 6裴惠生.一类拓扑空间的闭自映射半群[J].信阳师范学院学报(自然科学版),2005,18(3):249-251. 被引量:1
  • 7裴惠生.一类变换半群的秩[J].信阳师范学院学报(自然科学版),2004,17(1):1-3. 被引量:3

二级参考文献18

  • 1PEI Huisheng.The α-congruences on S(X) and the S-equivalences on X[J].Semigroup Forum,1993,47:48-59.
  • 2HOWIE J M.Fundamentals of semigroup theory[M].Oxford University Press,1995.
  • 3PEI Huisheng.Equivalences,α-semigroups and α-congruences[J].Semigroup Forum,1994,49:49-58.
  • 4PEI Huisheng,GUO Yufang.Some congruences on S(X)[J].Southeast Asian Bulletin of Mathematics,2000,24:73-83.
  • 5PEI Huisheng.On the rank of the semigroup TE(X)[J].Semigroup Forum,2005,70(1):107-117.
  • 6MAGILL K D Jr,Subbiah S.Green's relations for regular elements of semigroups of endomorphisms[J].Can J Math,1974,26:1484-1497.
  • 7MAGILL K D Jr.Green's equivalences and related concepts for semigroups of continuous selfmaps[J].Annals of New York Academy of Sciences,1993,704:246-268.
  • 8PEI Huisheng.Regularity and Green's relations for semigroups of transformations which preserve an equivalence[J].Communications in Algebra,2005,33(1):109-118.
  • 9HOWIE J M. Fundamentals of semigroup theory[M]. Oxford University Press,1995.
  • 10HOWIE J M. The subsemigroup generated by the idempotents of a full transformation semigroup[J]. J London Math Soc, 1966,41 : 707-716.

共引文献2

同被引文献60

  • 1Xu B O,Zhao P,Li Jun-yang.Locally maximal idempotent-generated subsemigroups of singular order-preserving transformation semigroups[J].Semigroup Forum,2006,72:488-492.
  • 2You Tai-jie,Yang Xiu-liang.A classification of the maximal idempotent-generated subsemigroups of finite singular semigroups[J].Semigroup Forum,2002,64:236-242.
  • 3Pei Hui-sheng,Zou Ding-yu.Green's equivalences on semigroups of transformations that preserving order and an equivalence relation[J].Semigroup Forum,2005,71(2):241-251.
  • 4Howie J M.Idempotent generators in finite full transformation semigroups[J].Proc Royal Soc,1978,101:317-323.
  • 5Gomes G M S,Howie J M.On the ranks of certain semigroups of order-preserving transformations[J].Semigroup Forum,1992,45:272-282.
  • 6Howie J M,McFadden R B.Idempotent rank in finite full transformation semigroup[J].Proc Royal Soc Edinburgh,1990,A114:161-167.
  • 7Howie J M.An Introduction to Semigroup Theory[M].New York:Academic Press,1976.
  • 8Fountain J B.Abundant semigroups[J].Proc London Math Soc,1982,44(3):103-129.
  • 9游泰杰.变换半群讲义[D].贵阳:贵州师范大学,2008.
  • 10GOMES G M S, HOWIE J M. On the Ranks of Certain Semigroups of Order-Preserving Transformations [J]. Semig- roup Forum, 1992, 45(1): 272-282.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部