期刊文献+

一种基于分水岭变换的图像分割方案 被引量:22

Image segmentation based on watershed transform
下载PDF
导出
摘要 针对传统分水岭分割算法对噪声敏感和易于产生过分割问题,提出了一种基于开闭二次重建和非线性处理的分水岭图像分割方案.该方案根据噪声与信号在尺度与幅度分布上的差异,结合形态学开闭运算的特点,对原始图像进行形态开闭预重建,在计算形态梯度之后采用开闭后重建,对梯度进行给定的阈值变换,引入给定尺度等级的非线性分类,在像素连通关系的基础上,研究了一种改进的分水岭标记算法进行分割,并给出了具体实现流程,.仿真实验结果说明,该方案能够抑制传统算法中的过分割,且边缘定位准确. Aimed at resolving the problems of sensitivity to noise and over-segmentation existing in traditional watershed algorithm, a watershed segmentation scheme based on double opening and closing reconstruction and non-linear processing was proposed. According to the differences of scale and amplitude distribution between noise and signal in the scheme, morphological opening and closing pre-reconstruction of the original image was utilized by integrating with characteristics of morphological opening and closing operation, and morphological opening and closing post-reconstruction was performed after the morphological gradient's calculation. After a certain threshold transform was employed on the gradient, a non-linear classification based on certain scale grade was proposed. An improved watershed labelling algorithm was put forward and applied based on pixel's connexity, and the concrete implementation flow was given. Simulated experimental results show that the scheme can restrain over-segmentation existing in traditional algorithms, and exactly locate edges.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第9期1503-1506,1510,共5页 Journal of Zhejiang University:Engineering Science
关键词 分水岭变换 二次重建 非线性处理 细密纹理 过分割 watershed transform double opening and closing reconstruction non-linear processing close textures over-segmentation
  • 相关文献

参考文献9

  • 1VINCENT L,SOILLE P.Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 2GRAU V,MEWES AUJ,ALCANIZ M.Improved watershed transform for medical image segmentation using prior information[J].IEEE Transaction on Medical Imaging,2004,23(4):447-458.
  • 3CHIEN Shao-yi,HUANG Yu-wen,CHEN Liang-gee.Predictive watershed:a fast watershed algorithm for video segmentation[J].IEEE Transaction on Circuits and Systems for Video Technology,2003,13(5):453-461.
  • 4HARIS K,EFSTRATIADIS S.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transaction on Image Processing,1998,7(12):1684-1699.
  • 5HIEU T,MARCEL M,REIN V.Watersnakes:Energy-driven watershed segmentation[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(3):330-342.
  • 6MEYER F,VACHIER C.Image segmentation based on viscous flooding simulation[C]∥ Proceeding of ISMM,CSIRD.Sydney:ACM,2002:69-77.
  • 7VINCENT L.Morphological gray scale reconstruction in image analysis:Applications and efficient algorithms[J].IEEE Transaction on Image Processing,1993,2(2):176-201.
  • 8SALEMBIER P.Morphological multi-scale segmentation for image coding[J].Signal Processing,1994,38(3):359-386.
  • 9任俊,李志能,傅一平.基于RGB降维模型和小波的彩色图像边缘检测[J].浙江大学学报(工学版),2004,38(7):856-859. 被引量:7

二级参考文献6

  • 1CHAPARRO A, STROMEYER C F Ⅲ. Colour is what the eye sees best [J]. Nature, 1993,361 (6410):348-350.
  • 2SHIOZAKI A. Edge extraction using entropy operator[J]. Computer Vision, Graphics, and Image Processing, 1986, 36(10):1-9.
  • 3YANG C K, TSAI W H. Reduction of color space dimensionality by moment-preserving thresholding and its application for edge detection in color images [J].Pattern Recognition Letters, 1996, 17 (5): 481 - 490.
  • 4CHEN L H, TSAI W H. Moment-preserving techniques in image processing-a survey and new approaches [J]. Proceedings of the National Science Council, Republic of China, 1989, 13(5): 280-301.
  • 5MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
  • 6WANG Y P, CAI Y L. Multiscale B-spline wavelet for edge detection [J]. Science in China(Series A), 1995,38 (4): 449- 512.

共引文献6

同被引文献179

引证文献22

二级引证文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部