期刊文献+

磨合过程摩擦力单重分形和多重分形的研究 被引量:14

Study on Single Fractal and Multifractal of Frictional Forces in the Running-in Process
下载PDF
导出
摘要 分别在CD40润滑油和加入添加剂的CD40润滑油润滑条件下,通过销-盘摩擦磨损试验机对船用柴油机活塞环和缸套进行磨合磨损试验,提取摩擦力的时间序列信号,应用分形维数和多重分形谱研究了摩擦力的分形行为.结果表明:摩擦力信号具有分形特征;随着磨合磨损过程的进行,信号的分形维数和多重分形谱出现规律性的变化;不同阶段信号的分形维数趋于减小,与磨损表面粗糙度的变化规律一致;不同阶段信号的多重分形谱呈现出递增或递减趋势,反映了磨损表面的动态变化过程.因此,摩擦力信号的分形维数和多重分形谱可以对磨合磨损过程进行定量分析. Running-in and wear tests of a piston ring against a cylinder were conducted on a pin-on-disc tester, lubricated by both of CD40 lubricant and CD40 lubricant with additive. The sequence signals of the friction force were collected. The fractal behavior of the frictional forces was studied by means of fractal dimension and muhifractal spectrum. The sequence signals of the friction force are characterized by fractal, and the fractal dimension and muhifractal spectrum of the signals assume a regular variation in the running-in process. The variation of fractal dimension is coincident with the evolution of surface roughness, and the muhifractal spectrum can be used to describe dynamic process of friction surface. Therefore the quantitative analysis of running-in process can be carried out by fractal dimension and muhifractal spectrum of the sequence signals of the friction force.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2006年第5期467-471,共5页 Tribology
关键词 磨合磨损 摩擦力 分形维数 多重分形谱 定量分析 running-in wear, frictional force, fractal dimension, muhifractal spectrum, quantitative analysis
  • 引文网络
  • 相关文献

参考文献11

  • 1葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5):405-408. 被引量:56
  • 2Stout K J,King T G,Whitehouse D J.Analytical techniques in surface topography and their application to a running-in experiment[J].Wear,1997,43:99-115.
  • 3Thomas T R.The characterization of changes in surface topography during running-in[M].In:Proceedings of the 4th leedslynon symposium on tribology,Leeds,1997.98-108.
  • 4Zhu H,Ge S R,Huang X L.Experimental study on the characterization of worn surface topography with characteristic roughness parameter[J].Wear,2003,255(1-6):309-314.
  • 5陈国安 葛世荣 张晓云.分形几何与摩擦学进展.润滑与密封,1999,(5):69-71.
  • 6钱善华,葛世荣,朱华.分形理论及其在机械工程中的应用[J].煤矿机械,2005,26(6):123-125. 被引量:6
  • 7Zhou G Y,Leu M C,Blackmore D.Fractal geometry model for wear prediction[J].Wear,1993,170:1-1.
  • 8陈国安,葛世荣,王军祥.分形理论在摩擦学研究中的应用[J].摩擦学学报,1998,18(2):179-184. 被引量:38
  • 9李贤彬,丁晶,李后强.水文序列Hurst系数的子波估计[J].水利学报,1999,30(8):21-25. 被引量:23
  • 10Brown G,Michon G,Peyriere J.On the multifractal analysis[J].Journal of Stat Phys,1992,66(3/4):775-790.

二级参考文献38

共引文献149

同被引文献134

引证文献14

二级引证文献70

;
使用帮助 返回顶部