期刊文献+

基于RBF神经网络的开关磁阻电机瞬时转矩控制 被引量:59

Instantaneous Torque Control of Switched Reluctance Motors Based on RBF Neural Network
下载PDF
导出
摘要 开关磁阻电机(SRM)因其结构简单、工作可靠、效率高、成本低等优点使之成为当前极具竞争力的一种调速电动机。但由于电机本身的非线性电磁特性,导致了其转矩脉动比其他传动系统严重。如何更好地对开关磁阻电机的转矩进行控制,抑制转矩脉动也成为了近年来研究的热点。针对这一问题,提出了一种基于基于径向基函数(radial basis function,RBF)神经网络的开关磁阻电机瞬时转矩控制方法。利用从SRM动态模型仿真中产生的数据来对RBF神经网络进行离线训练,使之学习不同转速和转矩下的优化电流波形,再将训练好的RBF网络用于电机的转矩控制中,完成不同转速下,转矩、位置到电流的非线性映射。最后通过瞬时电流跟踪控制使电机电流跟踪参考电流,完成电机的转矩控制。该控制方法充分利用了RBF神经网络逼近、泛化能力强,运算速度快的优点,且控制过程简单,网络无需在线训练。实验结果证明,该控制策略能有效减小开关磁阻电机的转矩脉动,具有控制精度高、能适应转速变化等优点。 The inherent simplicity, ruggedness, great efficiency and low cost of a switched reluctance motor(SRM) make it a potential candidate for adjustable speed application. However, owing to its nonlinear electromagnetism characteristic, the torque ripple of motor is much more severe than other drive system. For that reason, the torque ripple minimization in SRM has obtained great attention. To solve this problem, this paper presents a scheme of instantaneous torque control for switched reluctance motors based on radial basis function(RBF) neural network. The off-line training of RBF network is based on the data acquired by dynamic modeling. After trained from the optimized current profiles in different speed and torque, RBF network could be able to achieve the nonlinear mapping between torque, position and current. The approach of transient current tracing control is implemented in this system to adjust the current in order to control the torque of the motor. This method which has taken advantages of RBF neural network in approximation, generalization and calculation is simple and needs no on-line training. The results of experiment prove that this method could reduce SRM's torque ripple effectively and is adaptive to speed variety.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第19期127-132,共6页 Proceedings of the CSEE
基金 天津市自然科学基金项目(06YFJMJC01900)
关键词 开关磁阻电机 径向基函数神经网络 动态建模 离线训练 瞬时电流跟踪 switched reluctance motor radial basis function neural network dynamic modeling off-line training transient current tracing
  • 相关文献

参考文献14

二级参考文献51

  • 1夏长亮,祁温雅,杨荣,史婷娜.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报,2004,19(9):18-22. 被引量:13
  • 2金耀初,蒋静坪.最优模糊控制的两种设计方法[J].中国电机工程学报,1996,16(3):201-204. 被引量:22
  • 3王永冀 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 4郑洪涛.开关磁阻电动机位置伺服控制系统.河北工业大学硕士学位论文[M].-,2000..
  • 5[1]Carlson R,Lajoie-Mazenc M,Fagundes J.Analysis of torque ripple due to phase commutation in brushleses DC machines[J]. IEEE Trans on Industry Application,1992,28(3):632-638.
  • 6[2]Batzel T D,Lee K Y.Commutation torque ripple minimization for permanent magnet synchronous machines with hall effect position feedback[J]. IEEE Trans on Energy Conversion,1998,13(3):257-262.
  • 7[3]Park S J,Park H W,Lee M H,et al. A new approach for minimum torque ripple maximum efficiency control of BLDC motor[J]. IEEE Trans on Industry Electronics,2000,47(4):109-113.
  • 8[4]Kim Y,Kook Y,Ko Y. A new technique of reducing torque ripples for BDCM drives [J]. IEEE Trans on Industrial Electronics. 1997,44(5):735-739.
  • 9[5]Fukuda T,Shibata T.Theory and application of neural networks for industrial control system[J].IEEE Trans on Industrial Electronics,1992,39(6):432-489.
  • 10[6]Ahmed R,Kotaru,Raj. Neural net-based robust controller design for brushless dc motor drives[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,1999,29(3):460-474.

共引文献344

同被引文献394

引证文献59

二级引证文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部