摘要
The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method's deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly's equation.
Connolly (1999 ) 有弹性的阻抗(EI ) 方程是 P 波浪速度, S 波浪速度,密度,和发生角度的功能。常规倒置方法能仅仅直接基于这个方程提取 P 速度, S 速度,和密度数据,在不同发生角度的有弹性的阻抗不在一样的规模,它使比较困难。我们基于灰色的等建议一个新有弹性的阻抗方程。(1999 ) 地址的 Zoeppritz 近似使用 Lam é参数常规倒置方法的缺乏。这个方程被使正常化在不同角度统一有弹性的阻抗尺寸并且为倒置使用了。Lam é参数能从用在 Lam é参数和有弹性的阻抗之间的线性关系从倒置获得的有弹性的阻抗数据直接被提取。有弹性的参数用这个新方法提取了的申请例子表演更稳定、正确并且能恢复水库信息很好。新方法是常规方法上的改进基于 Connolly 的方程。