摘要
We have studied the excitation properties of biophysical Hodgkin-Huxley neurons with the side-inhibition mechanism in small-world networks. The result shows that the excitation properties in the networks are preferably consistent with the characteristic properties of a brain neural system under external constant stimuli, such as fatigue effect, extreme excitation principle, and the brain neural excitation response induced by different in- tensity of noise and coupling. The results of the study might shed some light on the study of the brain nerve electrophysiology and epistemological science.
We have studied the excitation properties of biophysical Hodgkin-Huxley neurons with the side-inhibition mechanism in small-world networks. The result shows that the excitation properties in the networks are preferably consistent with the characteristic properties of a brain neural system under external constant stimuli, such as fatigue effect, extreme excitation principle, and the brain neural excitation response induced by different in- tensity of noise and coupling. The results of the study might shed some light on the study of the brain nerve electrophysiology and epistemological science.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 70571017, 10247005, 10547004 and 10472116, the Guangxi Innovative Fund for the Programme of Graduate Education, and the Key Project of the National Natural Science Foundation of China under Grant No 70431002.