期刊文献+

一种机动目标的跟踪算法研究 被引量:12

Research on Maneuvering Target Tracking Algorithm Based on PF-RBF-Neural-Networks
下载PDF
导出
摘要 目前在机动目标跟踪领域中讨论比较多的算法包括扩展卡尔曼滤波算法、强跟踪算法、UKF算法和粒子滤波算法;扩展卡尔曼滤波算法对非线性方程进行一阶线性阶处理,这种近似所带来的误差会随着非线性化程度的严重而越来越显著,最终造成滤波器的发散;而粒子滤波作为一种基于蒙特卡洛方法的贝叶斯滤波算法,虽然不需要对非线性方程进行一阶近似,但是其计算负担过于繁重,很难满足实时性的要求,提出了一种基于粒子滤波(PF)的径向基(RBF)神经网络(PF-RBF-Neural-Networks)机动目标跟踪算法,该算法能够获得和粒子滤波几乎相同的跟踪精度,同时又克服了粒子滤波计算量大的缺陷,仿真结果验证了该算法的有效性和可行性。 At present, a lot of non-linear filter algorithms were introduced into solving maneuvering target tracking issue, which ineluded extended kalman filter (EKF), strong tracking filter (STF), unscented kalman filter (UKF) and particle filter (PF). EKF algorithm dealt non--linear equation with the first step of Taylor series, such approximate error would be more and more remarkable as non-- linear degree serious, the filter would take on dispersed state finally. PF algorithm is a kind of Bayes filter based on Monte Carlo method, which is no need of approximate disposal with non-linear equation, but the heavy burden of calculating is more serious that is difficult to meet the request for real time character. A maneuvering target tracking algorithm is introduced based on PF--RBF--Neural--Networks, which can get the tracking accuracy nearly the same as PF algorithm, and overcome the defect of PF algorithm at the same time. The simulation experiment shows its validity and feasibility.
出处 《计算机测量与控制》 CSCD 2006年第10期1398-1400,共3页 Computer Measurement &Control
基金 国防预研基金项目(51421040103JB4902)
关键词 非线性滤波 粒子滤波 RBF神经网络 机动目标 non--linear filter ; particle filters; RBF--neural--networks; maneuvering target
  • 相关文献

参考文献6

二级参考文献12

  • 1C F Juang and C T Lin. An on-line Self-constructing neural fuzzy inference network and its applications [J]. IEEE Trans. Fuzzy Sys,1998, 6: 12-32.
  • 2B Armstrong and B S Holeman. Target tracking with a network of Doppler radars [J]. IEEE Trans. Aerospace. Electron. System, Jan 1998, AES-17: 33-48.
  • 3M K Sundareshan and F Amoozegar. Neural network fusion capabilities for efficient implement of tracking algorithms [J]. Mar 1997, 35(3): 692-707.
  • 4杨行峻 郑君里.人工神经网络[M].高等教育出版社,1991..
  • 5Chowdhury F N.A Neural approach to Data Fusion[A].Proc.American control Conf[C].USA:Seattle,WA,1995.1693-1697.
  • 6Simon Haykin.Neural Networks:A Comprehensive Foundation[M].2nd Edition.USA:Prentice Hall PTR.1998.
  • 7S J Julier,J K Uhlmann.A new Extension of the Kalman filter to Nonlinear Systems[A].In Proceedings of the SPIE Aero sense International Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,Florida:April,1997.20-25.
  • 8E Awan,A T Nelson.Neural dual extended Kalman Filtering:applications in speech enhancement and monaural blind signal separation.In Proc of IEEE Workshop on Neural Networks for Signal Processing VII[C].Florida:September 1997.
  • 9S J Julier.The scaled unscented transformation[J].In Proceedings of American Control Conference,Anchorage,AK,USA,May 2002,6:4555-4559.
  • 10J K Uhlmann.Algorithms for multiple target tracking[J].American Scientist,1992,80(2):128-141.

共引文献42

同被引文献80

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部