期刊文献+

一种基于空间邻接关系的k-means聚类改进算法 被引量:15

A k-means Adapted Algorithm Based on Spatial Contiguity Relations
下载PDF
导出
摘要 空间对象不仅具有非空间的属性特征,而且具有与空间位置、拓扑结构相关的空间特征。利用传统的聚类方法对空间对象进行聚类时,由于没有考虑空间关系,同一类的对象可能出现在空间不相邻的位置。基于空间邻接关系的k-means改进算法将相邻对象的空间邻接关系作为约束条件加以考虑,使聚类结果既反映了属性特征的相似程度,又反映了对象的空间相邻状态,从而可以揭示不同类别对象的空间分布格局,因此其比传统的k-means方法更适合于空间对象的聚类分析。 Spatial object has not only non-spatial attribute properties but also spatial properties related with space coordinates and topological structures. When using the traditional clustering methods to classify spatial objects, the objects of the stone class may appear in non-adjacent spatial positions because spatial relationships are not been considered. The k-means adapts algorithm based on spatial contiguity relations regards spatial contiguities of the neighboring objects as a restrained condition. So the clustering result not only reflects the similarities of attributes but also reflects spatial'adjacent relations, and furthermore reviews spatial distribution patterns of different classes. Therefore, this adapted algorithm is more suitable for the clustering analysis of spatial objects than the traditional k-means method.
出处 《计算机工程》 CAS CSCD 北大核心 2006年第21期50-51,75,共3页 Computer Engineering
基金 国家自然科学基金资助项目(40471111) 国家"863"计划基金资助项目(2002AA135230-1) 国家"973"计划基金资助项目(2001CB5103)
关键词 空间对象 空间邻接关系 邻接矩阵 K-MEANS聚类算法 Spatial object: Contiguity relation Contiguity matrix k means clustering algorithm
  • 相关文献

参考文献6

二级参考文献22

  • 1Lindeberg T.Scale-space Theory in Computer Vision.Netherlands:Kluwer,1994.
  • 2Lindeberg T.Scale-space:a framework for handling image structures at multiplc scales.In:Proc.CERN School of Computing,Egmond aan Zee,The Netherlands,8-21,September,1996.
  • 3Witkin A P.Scale space filtering:a new approach to multi-scale description.In:Image Understanding,S.Ullman and W Richards,eds.,Norwood N J:Ablex,1984.
  • 4Leung Y,Zhang J,Xu Z.Clustering by Scale-space fi1tering.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1396-1410.
  • 5Wong Y,Posner E C.A new clustering algorithm application to multi-spectral and polarimetric SAR images IEEE Transactions on Geo-science and Remote Sensing,1993,31(3):634-644.
  • 6Wong Y.Clustering data by melting.Neural Computation,1993,5:89-104.
  • 7HAN J W,KAMBER M. Data Mining: Concepts and Techniques[M].Morgan Kaufmann Publishers, 2001.223-259.
  • 8NG R T, HAN J. Efficient and effective clustering methods for spatial data mining [ A ]. Proc. of the 20th VLDB Cord. [ C ].Chile: Santiago, 1994. 144- 155.
  • 9ESTER M. A density - based algorithm for discovering clusters in large spatial database with noise[A]. Proc. 2nd Int. Conf. on KDDM[C]. USA:Portland, 1996. 226 - 231.
  • 10ESTER M. A database interface for clustering in large spatial database[A]. Proc. 1st Int. Conf. on KDDM[C]. Canada:Montreal,1995.47- 66.

共引文献126

同被引文献192

引证文献15

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部