摘要
设K是实自反Banach空间E的一个闭凸子集,T:K→K是一个连续伪压缩映射,f:K→K是一个固定的L—Lipschitzian强伪压缩映射.对于任意的t∈(0,1),设Xt是tf+(1-t)T的唯一不动点.我们证明了如果T有不动点且有从E到E^*弱序列连续对偶映像,则当t趋于0时,{xt}收敛于T的一个不动点.这个结果改进和推广了文[4]的相应结果.
Let K be a closed convex subset of a real reflexive Banach space E, T : K → K be a continuous pseudocontractive mapping, and f : K → K be a fixed L-Lipschitzian strongly pseudocontractive mapping. For any t∈ (0, 1), let xt be the unique fixed point of tf + (1 - t)T. We prove that if T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then (xt) converges to a fixed point of T as t approaches 0. The results presented extend and improve the corresponding results of [4].
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第6期1275-1278,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10371033
10271011)
关键词
连续伪压缩映射
黏滞迭代方法
不动点
continuous pseudocontractive mapping
viscosity approximation
fixed point