期刊文献+

初期电力市场确定电网日发电计划的模型与方法 被引量:18

Model and Method for Daily Dispatch Scheduling in Primary Power Markets
下载PDF
导出
摘要 在目前交易未开放的初期电力市场模式下,如何针对其特点建立合理的日发电计划模型对于保证这一时期各市场参与者的利益具有重要作用。文中立足电网公司建立日发电计划模型,重点考虑了非竞价机组的经济运行成本,并计及了包括竞价机组年度和月度中标电量的日分解值、机组爬坡速度、旋转备用和线路有功传输限制等约束。在所建模型的基础上,通过改进二次规划的可行方向法,计算发电成本函数为分段二次函数的动态优化调度问题,并与一个启发式机组组合算法相结合用以确定日发电计划。算例结果表明,该模型及方法可行、有效。 In some primary electricity markets with no day-ahead market trading, how to formulate the dispatching model for daily scheduling is of great importance because what the. model should be like has direct influences on the profits of bidding units, non-bidding units and grid companies. A daily scheduling model is set up in view of grid companies, and enough attention is paid to the costs of non-bidding units. Meanwhile, assigned-to-the-scheduled-day electrical energy quantities of long-term contracts, ramp rates, spinning reserves of units, and transmission limits are considered. A hybrid method is used to solve the model, which combines a heuristic unit commitment method with an extended feasible direction method for dynamic economic dispatch with piecewise cost functions. A case based on IEEE reliability test systems is provided to illustrate the model and methods.
作者 初壮 于继来
出处 《电力系统自动化》 EI CSCD 北大核心 2006年第22期43-47,共5页 Automation of Electric Power Systems
基金 黑龙江省自然科学基金(E0326)~~
关键词 日调度 动态优化调度 可行方向法 分段发电成本 电力市场 daily scheduling dynamic economic dispatch feasible direction method piecewise cost functions power market
  • 引文网络
  • 相关文献

参考文献6

二级参考文献21

  • 1[2]Mashhadi H R, Shanechi H M, Lucas C. A New Genetic Algorithm with Lamarckian Individual Learning for Generation Scheduling. IEEE Trans on Power Systems, 2003, 18(3): 1181~1186
  • 2[3]Senjyu T, Yamashiro H, Uezato K, et al. A Unit Commitment Problem by Using Genetic Algorithm Based on Unit Characteristic Classification. In: Proceedings of Power Engineering Society Winter Meeting, Vol 1. New York: IEEE,2002. 58~63
  • 3[7]Richter C W Jr, Sheble G B. A Profit-based Unit Commitment GA for the Competitive Environment. IEEE Trans on Power Systems, 2000,15(2): 715~721
  • 4[8]Kumaran G, Mouly V S R K. Using Evolutionary Computation to Solve the Economic Load Dispatch Problem. Evolutionary Computation, 2001, 1(1): 296~301
  • 5[10]Senjyu T, Shimabukuro K , Uezato K, et al. A Fast Technique for Unit Commitment Problem by Extended Priority List. IEEE Trans on Power Systems, 2003, 18(2): 882~888
  • 6Rudolf A, Bayrleithner R. A Genetic Algorithm for Solving the Unit CommitmentProblem of a Hydro-thermal Power System. IEEE Trans on Power System, 1999, 14(4): 1460~1468
  • 7王凌(Wang Ling).现代智能算法(Modern Intelligence Algorithm).北京:清华大学出版社(Beijing:Tsinghua University Press),2000
  • 8Grimes R C, Jabbour S J. The Dynamics Model for Measuring Dynamic Operating Benefits. Technical Report, Decision Focus Incorporated. Los Altos (CA), 1989
  • 9Cohen A, Sherkat V. Optimization Based Methods for Operations Scheduling. Proceedings of IEEE, 1987, 75 (12):1574-1591
  • 10Guan X, Luh P B, Yan H. An Optimization-based Method for Unit Commitment. International Journal of Electric Power & Energy Systems, 1992, 14(1): 9-17

共引文献61

同被引文献185

引证文献18

二级引证文献174

;
使用帮助 返回顶部