期刊文献+

求解多项分数阶常微分方程的数值方法 被引量:2

Numerical Methods for Multi-terms Fractional-Order Ordinary Differential Equation
下载PDF
导出
摘要 本文考虑多项的分数阶常微分方程。证明了其解的存在性与唯一性;导出了多项的分数阶常微分方程的解;提出了三种数值解法来近似多项的分数阶常微分方程解。第一种方法,利用Diethelm等技巧;第二种方法,利用Caputo分数阶导数,Riemann-Liouville分数阶导数,分数阶导数之间的关系;第三种方法,把多项的分数阶常微分方程转化为分数阶微分方程组,然后利用分数阶预估-校正法。最后给出了一些实际应用例子。 In this paper, a multi -- terms fractional - order ordinary differential equation is considered. The existence and uniqueness of the solution of this model is proved, and the analytical solution of the multi - terms fractional - order ordinary differential equation is derived. Three ntnnerical methods for solving the multi - terms fractional - order ordinary differential equation are proposed. The first method use Diethelm et al. 's technique; The second method use the relationship between the Captro, Riemann - IAouville and fractional - order derivatives; In the third method, the multi - terms fi-aetional - order ordi- nary differential equalicn is tranferred into a system of fractional order differential equations. A new computationally effective fractional Predictor- Corrector maethod is proposed for simulating the fi-actional order systems. Finally, some exam- pies of practical applicatiom are presented.
作者 王学彬
出处 《南平师专学报》 2006年第4期14-19,共6页 Journal of Nanping Teachers College
关键词 多项的分数阶常微分方程 CAPUTO分数阶导数 Riemann—Liouville分数阶导数 分数阶导数 分数阶数值方法 Multi-terms fractional-order ordinary differential equation Caputo definition Riemann-Liouville definition definition Fractional-order numerical Method
  • 相关文献

参考文献6

二级参考文献32

  • 1波利亚G 舍贵G.数学分析中的问题和定理(第二卷)[M].上海:上海科学技术出版社,1985.115.
  • 2Podlubny I.Fractional Differential Equation[M].New York:Academic Press,1999.
  • 3Gorenflo R.Time fractional diffusion:a discrete random walk approach[J].Nonlinear Dynamiccs,2002,29:129-143.
  • 4Rektory K.Handbook of Applied Mathematics,Vol.I,II[M].Prague:SNTL,1988(in Czech).
  • 5Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck equation[J].J.Comp.Appl.Math.,2004,166:209-219.
  • 6Diethelm K.An algorithm for the numerical solution of differential equations of fractional order[J].Electronic Transactions on Numerical Analysis,1997,5:1-6.
  • 7Ford N,Simpson A.The approximate solution of fractional differential equation of order greater than 1,Numerical Analysis Report No.386[R].Liverpool,UK:Association with Chester College-A College of the University,2003-05-03.
  • 8Diethelm K,Freed A.The FRACPECE subroutine for the numerical solution of differential equations of fractional order[EB/OL].http://www-public.tu-bs.de:8080/~diethelm/papers.html.
  • 9Lin Ran,Liu Fawang. Analysis of Fractional-order numerical method for the fractional Relaxation equation[A].Computational Mechanics[M/CD]. Beijing:Tsinghua University & Springer-Verlag,2004.
  • 10Kai Diethelm, Neville J Ford, Alen D Freed. Detailed error analysis for a fractional Adams method[J]. Numerical Algorithms,2004,36(1) :31-52.

共引文献26

同被引文献22

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部