期刊文献+

一种双向挖掘频繁项的有效方法 被引量:1

The Research and Implementation of Double Search Data-Mining Method for Frequents
下载PDF
导出
摘要 Apriori算法已成为关联规则挖掘的一个经典方法,广泛地被应用于如贸易决策、银行信用评估、金融保险等诸多领域。这种自底向上方法挖掘短频繁项集时效果较好,当频繁项集较长时,其时间复杂度量呈指数增长态势。本文结合自顶向下和自底向上搜索两种方法,提出一种能更好解决长、短频繁项集问题的双向挖掘方法。通过计算复杂度分析的实验表明,所提出的方法是有效可行的。 The Apriori algorithm has become a classic method for mining association rules. It is widely applied to various fields such as trade decision- making, bank evaluating credit, finance insurance, etc. This method is an effective down- top algorithm for minging frequents, but it will come across time consuming huge computing problems in mining long pattern frequent itemsets(e, g. 100 items). A new ideal method of top down mining frequent itemsets , which adopts some new concepts such as transaction and itemset association information tables, key items and reduction items,projection DB, etc is presented. It is very effective, especially when being used to mine long items. This paper propses a new method, combining the top down search method and bottom up search method , but its main search strategy is still top -down method. This algorithm can better solve problems of long&short frequents, the validity and effectiveness of the proposed algorithm is proved through the analysis of computing complexity and experimentation.
出处 《计算机科学》 CSCD 北大核心 2006年第12期196-199,共4页 Computer Science
基金 上海市教委科研基金 上海市重点学科建设项目资助(编号:T0602)。
关键词 数据挖掘 频繁项集 双向搜索 自顶向下挖掘 Data mining,Frequents,Double search,Top- down mining
  • 相关文献

参考文献8

  • 1王晓峰,王天然,赵越.一种自顶向下挖掘长频繁项的有效方法[J].计算机研究与发展,2004,41(1):148-155. 被引量:27
  • 2Lin D I, Kedem Z M. Pincer-search: A New Algorithm for Discovering the Maximum Frequent Set [C]. In: Proe. of the 6th European Conf. on extending database technology, 1998
  • 3Agrawal R, Imiclinski T, Swami A. Mining association rules between sets of items in large d tabases. In:Proceedings of the ACM SIGMOD Conference on Management of data, 1993. 207-216
  • 4Lin J L, Dunham M H. Mining association rules: Anti skewalgorithms. In: Proceedings of the International Conference on Data Engingeering, Orlando, Florida, February 1998
  • 5Brin S,Motwani R, Ullman J D, et al. Dynamic Itemset counting and implication rules for market basket data. In: ACM SIGMOD International Conference on the Management of Data. 1997
  • 6冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 7Roberto J,Bayardo Jr. Eficiently mining long patterns from databases,[C]. In: Proc. of the' 98 ACM-SIGMOD int. Conf. On Management of Data(SIGMOD'98), 1998. 85-93
  • 8王晓峰,王天然.相关测度与增量式支持度和信任度的计算[J].软件学报,2002,13(11):2208-2214. 被引量:8

二级参考文献12

  • 1[1]R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. In: Peter Buneman, Sushil Ajodia eds. Proc of ACM SIGMOD Conf on Management of Data, New York: ACM Press, 1993. 207~216
  • 2[2]J Han, J Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2000, 2(2): 14~20
  • 3[3]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation, In: M Dunham, J Naughton, W Chen eds. Proc of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York: ACM Press, 2000. 1~12
  • 4[4]J Roberto, Jr Bayardo. Efficiently mining long patterns from databases. In: Ashutosh Tiwary, Boeing Co eds. Proc of the 1998 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'98), New York: ACM Press, 1998. 85~93
  • 5[5]D-I Lin, Z M Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: Bertram Ludscher, Wolfgang May eds. Proc of the 6th European Conf on Extending database technology, Proceedings, Lecture Note in Computer 1377. Berlin: Springer 1998, 1998. 105~119
  • 6[6]Z Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. Holland: Kluwer Academic Publishers, 1991
  • 7[7]Hu Xiaohua. Knowledge discovery in database: An attribute-oriented rough set approach [Dissertation]. University of Regina, Canada, 1995
  • 8[8]Collections of data for developing, evaluating, and comparing learning methods. 2001. http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html
  • 9冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 10王晓峰,尹丹娜,郑诗诠.相关集合论(英文)[J].沈阳化工学院学报,1999,13(1):67-76. 被引量:4

共引文献258

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部