期刊文献+

一种用于车辆最短路径规划的自适应遗传算法及其与Dijkstra和A^*算法的比较 被引量:20

A self-adaptive genetic algorithm for the shortest path planning of vehicles and its comparison with Dijkstra and A* algorithms
下载PDF
导出
摘要 提出了一种自适应遗传算法,并成功应用于车辆最短路径规划算法中.所采用的编码方式、交叉及变异算子等均针对最短路径规划问题而专门设计;同时,提出了一种新的交叉概率、变异概率在线自适应调整策略,以便提高遗传算法的搜索速度和搜索质量.将该算法同Dijkstra算法、A*算法进行了仿真比较.对五种不同情况的仿真研究结果表明:同Dijkstra算法相比,该自适应遗传算法可以减少搜索到最短路径的时间;同A*算法相比,该自适应遗传算法则可以搜索到更多的最短路径. A self-adaptive genetic algorithm was proposed and successfully applied for the shortest path planning of vehicles. The encoding scheme, crossover and mutation operators were specifically designed for shortest path planning problems in the proposed genetic algorithm. A new online self-adaptive adjustment strategy for crossover and mutation probabilities was also investigated in order to improve the search speed and search quality of genetic algorithm. The comparison of the proposed genetic algorithm with Dijkstra and A^* algorithms was carried out. Simulation results under 5 different circumstances show that the proposed genetic algorithm can decrease the searching time for shortest path compared with Dijkstra algorithm and obtain more shortest paths than A^* algorithm.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第11期1082-1086,共5页 Journal of University of Science and Technology Beijing
基金 国家十五科技攻关项目(No.2001BA605A-02)
关键词 最短路径规划 车辆导航 遗传算法 自适应调节 shortest path planning vehicle guidance genetic algorithm self-adaptive adjustment
  • 相关文献

参考文献9

二级参考文献28

共引文献111

同被引文献150

引证文献20

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部