期刊文献+

复杂网络中节点重要度评估的节点收缩方法 被引量:258

Evaluation Method for Node Importance based on Node Contraction in Complex Networks
原文传递
导出
摘要 首先定义了网络的凝聚度,在此基础上提出了一种评估复杂网络节点重要度的节点收缩方法,认为最重要的节点就是将该节点收缩后网络的凝聚度最大,其算法的时间复杂性为O(n3).该方法综合考虑了节点的连接度以及经过该节点最短路径的数目,克服了节点删除法的弊端.最后的实验分析表明该方法直观、有效且运算速度快,对于大型复杂网络可以获得理想的计算能力. Complex networks with inhomogeneous topology are very fragile to intentional attacks on the "hub nodes". It is very important and desirable to evaluate the node importance and find these "hub nodes". The networks agglomeration is defined firstly. A node contraction method of evaluation of node importance in complex networks is proposed based on a new evaluation criterion, i. e. the most important node is the one whose contraction results in the largest increase of the networks agglomeration. With the node contraction method, both degree and position of a node are considered and the disadvantage of node deletion method is avoided. An algorithm whose time complexity is O( n^3) is proposed. Final experiments verify its efficiency.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第11期79-83,102,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70501032)
关键词 复杂网络 凝聚度 节点重要度 节点收缩 complex networks agglomeration node importance node contraction
  • 相关文献

参考文献16

  • 1Watts D J, Strogatz S H. Collective dynamics of‘small-world' networks [J]. Nature, 1998, 393:440- 442.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286:509 - 512.
  • 3吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:251
  • 4方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究[J].科技导报,2004,22(2):9-12. 被引量:63
  • 5Callaway D S, Newman M E J, Strogatez S H, et al. Network robustness and fragility: Percolation on random graphs [ J]. Phys Rev Lett, 2000, 85(25): 5468- 5471.
  • 6Albert R, Jeong H, Barabasi A-L. Error and attack tolerance of complex networks [J]. Nature, 2000, 406:378 -382.
  • 7Gallos L K, Cohen R, Argyrakis P. Stability and topology of scale-free networks under attack and defense strategies [J]. Phys Rev Lett, 2005, 94: 188701.
  • 8Ball M O, Golden B L, Vohra R V. Finding the most vital ares in a network [J]. Oper Res Lett, 1989, 8:73 -76.
  • 9Page L B, Perry J E. Reliability polynomials and link importance in networks [J]. IEEE Tans Reliability, 1994, 43(1) : 51 - 58.
  • 10Hsu L H, Jan R H, Lee Y C, et al. Finding the most vital edge with respect to minimum spanning tree in weighted graphs [J].Info Proc Lett, 1991, 39:277 - 281.

二级参考文献6

共引文献345

同被引文献1885

引证文献258

二级引证文献2111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部