期刊文献+

基于经验模态分解的自适应滤波算法在局部放电窄带干扰抑制中的应用 被引量:9

Application of adaptive filtering algorithm based on empirical mode decomposition to suppress DSI in PD detection
下载PDF
导出
摘要 自适应滤波算法是当前抑制窄带干扰的有效方法。对于单频率的窄带干扰,设置自适应滤波器的参数比较容易,但是对于局放监测中多个频率且频率范围很宽的窄带干扰,设置自适应滤波的参数就会变得很困难。根据经验模态分解EMD(Emp iricalMode Decomposition)的分频特性,将EMD引入自适应滤波算法,提出了一种基于EMD的自适应滤波算法。局放信号中多个频率的窄带干扰经EMD分解之后,会分解到不同的模态函数中,从而将多频率的窄带干扰转化成了多个单频率的窄带干扰,在此基础之上对固有模态函数进行自适应滤波,可以较容易地解决自适应滤波器参数设置的问题,并能获得比普通自适应滤波更好的效果。仿真及实际数据的处理验证了该算法的有效性。 Adaptive filter is an effective method for suppressing Discrete Spectrum Interference (DSI). For DSI with single frequency, it is easy to set the parameters of the filter. However, it will become difficult when faces with DSI of multi-frequency, which often occurs in partial discharge monitoring systems. Based on the frequency splitting characteristics of Empirical Mode Decomposition ( EMD), this paper incorporates it into the adaptive filtering algorithm and a novel algorithm was proposed. After EMD of the noisy signals, DSIs of different main frequency could be decomposed into different Intrinsic Mode Functions (IMF), and then multi-frequency DSI would turn to some single-frequency DSIs. Based on this transformation, problems about settings of adaptive filter can he solved. Results obtained from simulation signals and on-site data confirm its validity.
出处 《继电器》 CSCD 北大核心 2006年第22期27-31,共5页 Relay
关键词 经验模态分解 固有模态函数 自适应滤波 局部放电 窄带干扰 empirical mode decomposition intrinsic mode function adaptive filter partial discharge discrete spectrum interference
  • 引文网络
  • 相关文献

参考文献5

  • 1Satish L, Nazneen B. Wavelet-based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference[ J ]. IEEE Trarls on Eelectronics and Electrical Insulation, 2003,10 (2) : 354-367.
  • 2Huang N E, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[Jl. Proc R Soc Lond A, 1998.903 -995.
  • 3Flandrin P, Goncalves P. Emipirical Mode Decompositions as Data-driven Wavelet-like Expansions [ J ]. International Journal of Wavelets, Muhiresolution and Information Processing, 2004,2(4) : 477-496.
  • 4Hayes M H. Statistical Digital Signal Processing and Modeling [ M]. John Wiley and Sons, Inc, 1996.
  • 5徐剑,黄成军,金浩,邵震宇.基于小波集合的局部放电信息提取算法[J].电力系统自动化,2004,28(16):36-40. 被引量:15

二级参考文献9

  • 1Nagesh V, Gururaj B I. Evaluation of Digital Filter for Rejecting Discrete Spectral Interferences in On-site PD Measurements.IEEE Trans on Electrical Insulation, 1993, 28(1): 73-85
  • 2Satish L, Nazneen B. Wavelet Based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference.IEEE Trans on Dielectrics and Electrical Insulation, 2003,10(2): 354-367
  • 3Ma X, Zhou C. Automated Wavelet Selection and Threshold for Detection. IEEE Electrical Insulation Magazine, 2002, 18 (2):37-45
  • 4唐炬 宋胜利 孙才新 (TangJu SongShengli SunCaixin etal).局部放电离散谱干扰的小波包变换熵阈值抑制法[Z].,..
  • 5王振远 谈克雄 朱德恒 (WangZhenyuan TanKexiong ZhuDeheng etal).根据脉冲波形特征识别几种典型模型放电的研究(Recognition of Several Kinds of Typical Discharges Based on Characteristics of Current Pulse Shape)[J].电工技术,.
  • 6杨福生(YangFusheng).小波变换的工程分析与应用(AnalysisandApplicationofWaveletTransformforEngineering),Science Press)[M].北京:科学出版社(Beijing,1999..
  • 7杨莉,全玉生,周跃峰,严璋.大型发电机定子绕组故障放电的特性与识别[J].电工电能新技术,1999,18(2):23-27. 被引量:7
  • 8张冠军,全玉生,钱政,严璋.电力变压器典型局放模型的放电信号图谱[J].高电压技术,1999,25(2):13-14. 被引量:8
  • 9刘庆,张炳达,李志兴.利用最优小波进行局部放电脉冲的提取和消噪[J].电力系统及其自动化学报,2003,15(3):42-45. 被引量:20

共引文献14

同被引文献92

引证文献9

二级引证文献46

;
使用帮助 返回顶部