期刊文献+

基于本体的数字图书馆检索模型研究(Ⅳ)——历史领域知识推理机制 被引量:17

Research On Ontology-based Retrieval Model of Digital Library(Ⅳ ) --Inference Mechanism of History Domain Knowledge
下载PDF
导出
摘要 基于本体的领域知识推理主要分为基于逻辑的领域知识检错推理和基于关系的领域蕴涵知识发现推理。对本体描述的领域知识进行推理,可以检测知识逻辑体系错误,减少领域本体构建繁琐的工作量,减轻对领域专家的依赖,发现领域蕴涵知识。在国共合作领域知识进行语义关系分析的基础上,提炼推理规则库,并分别运用TABLEAU算法和RETE模式匹配算法,在推理引擎Racer和Jena中实现了逻辑检错推理和蕴涵知识发现推理。 In our opinion, ontology-based domain knowledge inference includes logic error-check inference and domain deductive knowledge detection reasoning. Inferences on ontology-based domain knowledge can help us check out the mistakes and flaws in the knowledge logic system, reduce fussy workload of ontology buildings, lessen our dependence on the domain experts and represent deductive domain knowledge. Based on the analysis of the semantic relations in the GGHZ domain knowledge, we developed an inference rules base (including 107 static rules and dynamic rules), and based our inferences on TABLEAU arithmetic and RETE arithmetic, then implemented logic error-check inferences and deductive knowledge detection reasoning through two reasoning engines of Racer and Jena.
出处 《情报学报》 CSSCI 北大核心 2006年第6期666-678,共13页 Journal of the China Society for Scientific and Technical Information
基金 本文属国家自然科学基金资助项目(批准号:70373047).
关键词 知识推理 领域本体 推理规则 推理引擎 knowledge inference, domain ontology, inference rule, reasoner.
  • 相关文献

参考文献10

  • 1Daniele Nardi,Ronald J.Brachman.An Introduction to Description Logics.2005-6-26.http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf.6~18
  • 2Robert B Doorenbos.Production Matching for Large Learning System.2005-7-10.http://drools.org/download/attachments/8082/CMU-CS-95-113.pdf?version=1.13~39
  • 3葛强,郑逢斌,汤赛丽,侯丽敏,周舫.基于语义网络的家族人物关系推理算法的研究[J].计算机时代,2005(6):3-5. 被引量:2
  • 4Tobies S.The complexity of reasoning with cardinality restrictions and nominals in expressive description logics.JAIR,2000.199~217
  • 5Ian Horrocks,Ulrike Sattler.Ontology Reasoning in the SHOQ(D) Description Logic.2005-7-10.http://www.cs.man.ac.uk/~horrocks/ Publications/download/2001/ijcai01.pdf.3~6
  • 6Volker Haarslev.RACER User Guide and Reference Manual.2005-7-10.http://www.informatik.uni-hamburg.de/~haarslev/publications/racer-man ual-1-6.pdf.45~56
  • 7Charles L Forgy.Rete:A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.Artificial Intelligence,1982(19):17~37
  • 8Franz Baader.Tableau Algorithms for Description Logics.2005-6-28.http://lat.inf.tu-dresden.de/~baader/Talks/Tableaux2000.pdf.8~32
  • 9Jena2-A Semantic Web Framework.2005-5-15.http://www.hpl.hp.com/semweb/jena2.htm
  • 10DIG接口参考.2005-6-20.http://down.xml.org.cn/Semantic%20Web/RACER/DIG%20interface1.1.pdf

二级参考文献4

  • 1王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1999..
  • 2陆汝钤.人工智能[M].北京:科学出版社,2002.451-452.
  • 3郑逢斌.计算机理解自然语言查询的研究与实现西南交通大学博士研究生学位论文,2004.
  • 4王树西,刘群,白硕.一个人物关系问答的专家系统[J].广西师范大学学报(自然科学版),2003,21(A01):31-36. 被引量:18

共引文献1

同被引文献231

引证文献17

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部