期刊文献+

一种新的加法型快速大数模乘算法 被引量:2

A New Fast Large-number Modular Multiplication Algorithm Based on Addition
下载PDF
导出
摘要 通过对目前常用的几类模乘方法的综合研究,充分吸取估商型模乘算法的估商思想,借助Montgomery型模乘算法中模2n易计算特性,采用窗口分段处理方式,给出了一种新的利用模N进行预计算的方法,进而提出了一种新的加法型模乘AB mod N快速实现算法。模N为1 024-bit、窗宽为6时,新算法平均仅需693次1 024-bit加法便可完成一次AB mod N模乘运算,与当前加法型模乘算法相比,较大幅度地降低了计算复杂度。 Researched on several recently widely used modular multiplication algorithms, adopted the ideal of window division, estimating quotient, and modular 2^n easy to be calculated, which is used in Montgomery modular multiplication algorithm, a new fast calculating AB mod N algorithm based on addition is presented, which introduces pre-calculating by modular N. When the length of modular N is 1 024-bit and the length of window is 6, on the average, the new algorithm requires only 693 times 1 024-bit addition to calculate AB mod N. Comparing with current additional modular multiplication algorithm, the computing complexity is reduced largely.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第1期167-169,共3页 Computer Engineering
基金 浙江省自然科学基金资助项目(M603028) 浙江省教育厅高校科研计划基金资助项目(20030636)
关键词 公钥密码 模幂运算 模乘运算 窗口宽度 Public-key cryptography Modular exponentiation Modular multiplication Window length
  • 相关文献

参考文献10

  • 1Orup H.Exponentiation,Modular Multiplication and VLSI Implementation of High-Speed RSA Cryptography[D].Denmark:Department of Computer Science,University of Aarhus,1995.
  • 2Knuth D E.The Art of Computer Programming:Seminumerical Algorithms(Volume 2)[M].Reading MA:Addison-Wesley,1981.
  • 3Barrett P.Implementing the Rivest,Shamir and Adleman Public-key Encryption Algorithm on a Standard Digital Signal Processor[C]//Proc.of Advances in Cryptology-CRYPTO'86.Springer-Verlag,1987,263:311-323.
  • 4Dhem J F.Design of an Efficient Public-key Cryptographic Library for RISC-based Smart Cards[D].Universite Catholique de Louvain,1998-05.
  • 5Blakley G R.A Computer Algorithm for Calculating the Product AB Modular M[J].IEEE Trans.on Computers,1983,32(5):497-500.
  • 6Chiou C W,Yang T C.Iterative Modular Multiplication Algorithm Without Magnitude Comparison[J].Electronic Letter,1994,30(24):2017-2018.
  • 7刘宏伟,王昭顺,班晓娟.RSA公钥密码体制的实现研究[J].计算机工程与应用,2002,38(17):52-54. 被引量:19
  • 8Montgomery P L.Modular Multiplication Without Trial Division[J].Math.Computation,1985,44 (170):519-521.
  • 9Su F F,Hwang T.Comments on Iterative Modular Multiplication Without Magnitude Comparison[C]//Proceedings of the 6^th National Conference on Information Security,Taichung,Taiwan,1996:21-22.
  • 10Chen C Y,Liu T C.A Fast Modular Multiplication Method Based on the Lemple-Ziv Binary Tree[J].Computer Communications,1999,22(9):871-874.

二级参考文献1

  • 1黄铠 徐志伟.可扩展并行计算技术、结构与编程[M].北京:机械工业出版社,2000..

共引文献18

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部