期刊文献+

人工湿地脱氮途径及其影响因素分析 被引量:83

Analyse of nitrogen removal pathways and their effect factors in constructed wetland
下载PDF
导出
摘要 简述了人工湿地脱氮模型。各种形态的氮在人工湿地系统中可以通过氨的挥发、植物吸收、介质沉淀吸附以及微生物硝化/反硝化作用等过程被去除。讨论了各脱氮途径对人工湿地脱氮的贡献,在大多数人工湿地的pH条件下,湿地地面氨挥发可以忽略,湿地植物叶片氨挥发量尚不清楚。湿地介质的直接吸附是短期的。植物在湿地脱氮过程中起了重要作用,但一般认为植物直接吸收和存储只占湿地脱氮的一小部分,一般低于30%。微生物的硝化/反硝化作用,是人工湿地脱氮的最主要的形式。讨论了影响人工湿地硝化作用的主要因素:溶解氧,pH和温度。大多数人工湿地的pH适合硝化作用,溶解氧和温度对湿地硝化作用的影响最大。温度不仅影响微生物的硝化作用,而且可以间接地影响植物的生长从而影响人工湿地的脱氮性能。 Nitrogen removal model from wastewater in constructed wetlands (CW) was simply described. Nitrogen could be removed in constructed wetland through processes including NH3 volatilization, plants uptake, matrix sedimentation and nitrification-denitrification of microorganism, The role of each process for nitrogen removal was evaluated. Under the pH conditions in most constructed wetlands, ammonia volatilization by wetland surface could be neglectable, while ammonia volatilization by plant leaves is still unknowable. Adsorption by matrix is short-term. Plants play important role in nitrogen removal in CW. However, plant uptake accounts for a small proportion of generally bellow 30% of total nitrogen removed. Consequently, uptake by plants is not significant. Nitrogen losses through nitrification-denitrification are generally the most significant N-removal mechanisms for WC. Three important factors that influence nitrification rates were discussed, dissolved oxygen (DO), pH and temperature, pH conditions in Most CWs are suitable for nitrification. DO and temperature are the mostly important factors influence nitrification in CW. Temperature is not only influence nitrification of microorganisms, but indirectly influence CW performance of nitrogen removal through plants growth.
出处 《生态环境》 CSCD 北大核心 2006年第6期1385-1390,共6页 Ecology and Environmnet
基金 国家高技术研究发展("863")计划专项(2003AA601020)
关键词 人工湿地 脱氮 植物吸收 硝化/反硝化作用 溶解氧 PH 温度 constructed wetland nitrogen removal plant uptake nitrification-denitrification dissolved oxygen pH temperature
  • 相关文献

参考文献67

  • 1BRIX H.Function of macrophytes in constructed wetlands[J].Water Science & Technology,1994,29(4):71-78.
  • 2BRIX H.Wastewater treatment in constructed wetlands:system design,removal processes,and treatment performance[A].Constructed wetlands for water quality improvement[C].Boca Raton,FL:CRC Press,1993.9-22.
  • 3KADLEC R H,KNIGHT R L.Treatment wetlands[M].Boca Raton,FL:Lewis Publishers.1996.
  • 4HAMMER D A,KNIGHT R L.Designing constructed wetlands for nitrogen removal[J].Water Science & Technology,1994,29(4):15-27.
  • 5BROWN D S,REED S C.Inventory of constructed wetlands in the United State[J].Water Science & Technology,1994,29(4):309-318.
  • 6KADLEC R H.Overview:subsurface flow constructed wetlands[J].Water Science & Technology,1995,32(3):1-2.
  • 7KEMP M C,GEORGE D B.Subsurface flow constructed wetlands treating municipal wastewater for nitrogen transformation and removal[J].Water environment research,1997,69(7):1254-1262.
  • 8REED S C,BROWN D.Subsurface flow wetlands-a performance evaluation[J].Water environment research,1995,67(2):244-248.
  • 9WHITE K D.Enhancement of nitrogen removal in subsurface floe constructed wetlands employing 2-stage configuration,an unsaturated zone,and recirculation[J].Water Science & Technology,1995,32(3):59-67.
  • 10BRIX H.Treatment of wastewater in the rhizosphere of wetland plants-the rootzone method[J].Water Science & Technology,1987,19:107-118.

同被引文献1115

引证文献83

二级引证文献554

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部