期刊文献+

RBF网络及其在数值计算中的应用 被引量:2

Radius Basis Function Neural Networks and its Application in Numerical Calculation
下载PDF
导出
摘要 由经典的函数逼近理论衍生的很多数值算法有共同的缺点:计算量大、适应性差,对模型和数据要求高,在实际应用中受到限制。神经网络可以被用来计算复杂输入与输出结果之间的关系,具有很强的函数逼近功能。文章阐述如何利用RBFNN进行函数逼近、求解非线性方程组以及散乱数据插值,结合MATLAB神经网络工具箱给出了数值实例,并与BP网络等方法进行了比较。应用结果表明RBFNN是数值计算的一个有力工具,与传统方法比较具有编程简单、实用的特点。 Many numeric algorithms derived from classical function approach theories have much flaw, such as too many complicated computation, bad adaptation, rigid demand for model and data and so on. So, they are restricted in the real application. Neural networks can be used to compute the relationship between complicated inputs and outputs, so neural networks have strong ability to approximate functions. How to solve functional approximating, nonlinear muhivariable equation systems and scattered data interpolation with RBFNN is elaborated in this paper. Simultaneously, numerical examples are given combining with the toolbox of MATLAB neural networks and experimental results are compared with some other methods. It is made clear that RBFNN is a powerful tool for numeric computation with easy computer programming. It has high value of application that RBFNN is made of software to resolve numerical problems.
出处 《复杂系统与复杂性科学》 EI CSCD 2006年第2期63-68,共6页 Complex Systems and Complexity Science
关键词 径向基网络 函数逼近 插值 RBFNN functional approximating interpolation
  • 相关文献

参考文献8

二级参考文献20

  • 1刘松涛,曾舍荣,李争齐.曲面上离散点集的光滑插值[J].高校应用数学学报(A辑),1998,13(B06):51-56. 被引量:2
  • 2阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 3A Jonathan Howell,Hilary Buxton.Learning identity with radial basis function networks [J].Neurocomputing,1998,20:15-34.
  • 4Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks.1991,2(2):302-309.
  • 5Orr M J L.Regularization in the selection of radial basis function centers[J].Neural Computation,1995,7:606-623.
  • 6Joannou D,Huda W,Laine A F.Circle Recognition through a 2D Hough transform and radius histogramming[J].Image and vision computing,1999,17:15-26.
  • 7HARTMAN E J,KEELER J D,KOWALSKI J M.Layered neural networks with guasian hidden units as universal approximations[J].Neural Compute,1990,2:210-215.
  • 8CHEN S,COWAN C F N,GRANT P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans.on Neural Networks,1991,2(2):302-309.
  • 9STEIN M C.Estimation of the mean of a multivariate normal distribution.Annals of Statistics,1981,9(6):1135-1151.
  • 10曹建云.工业过程中的径向基函数神经网络应用[C]..第23届中国控制会议论文集(下)[C].,.904-904.

共引文献88

同被引文献20

  • 1常文渊,戴新刚,陈洪武.地质统计学在气象要素场插值的实例研究[J].地球物理学报,2004,47(6):982-990. 被引量:44
  • 2范影乐,李轶.基于非线性动力学方法的时间序列处理[J].复杂系统与复杂性科学,2004,1(3):70-75. 被引量:3
  • 3方书敏,钱正堂,李远平.甘肃省降水的空间内插方法比较[J].干旱区资源与环境,2005,19(3):47-50. 被引量:56
  • 4孟庆芳,张强,牟文英.混沌序列自适应多步预测及在股票中的应用[J].系统工程理论与实践,2005,25(12):62-68. 被引量:8
  • 5李志林,朱庆.数字高程模型[M].2版.武汉:武汉大学出版社,2007.
  • 6Wackernagel H. Multivariate Geostatisties; An Introduction with application [ M]. 3rd Edition. Berlin: Springer Verlag, 2003 : 416-429.
  • 7Hutchinson M F. Anew procedure for girding elevation and strearm line data with automatic removal of spurious pits[J]. Journal or Hydrology, 1989,106(3/4):211- 232.
  • 8Hutchinson M F. ANUDEM version 5.1 User Guide[C]// Centre for Resource and Environmental Studies. The Australian National University, Canberra, 2004 : 1-22.
  • 9Tang Keli, Zhen Fenli, Ca Xuan. Soil erosion on the sloping farmland in the loess plateau of China[C]// Proceedings of the Fourth International Symposium on River Sedimentation. Beijing : China Ocean Press, 1989.
  • 10Husar R B, Falke S R. Uncertainty in the spatial interpolation of PM10 monitoring data in Southern California[EB/OL]. http: //capita. wustl, edu/CA PITA/CapitaReports/CaInterp/ CalNTERP. HTML, 1997-03- 03/1999-10-25.

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部