期刊文献+

Characteristics and Seasonal Variations of PM2.5, PM10, and TSP Aerosol in Beijing 被引量:20

Characteristics and Seasonal Variations of PM2.5, PM10, and TSP Aerosol in Beijing
下载PDF
导出
摘要 Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique. Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.
出处 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第6期461-468,共8页 生物医学与环境科学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 29837190, 30230310, 20077004, and 20477004),and Beijing Natural Science Foundation (Grant No. 8991002 and 8041003).
关键词 PM2 5 PM10 TSP Seasonal variation SOURCES PM2,5 PM10 TSP Seasonal variation Sources
  • 引文网络
  • 相关文献

参考文献6

二级参考文献10

共引文献142

同被引文献265

引证文献20

二级引证文献231

相关主题

;
使用帮助 返回顶部