期刊文献+

二维有限元线法超收敛解答计算的EEP法 被引量:18

AN ELEMENT-ENERGY-PROJECTION METHOD FOR SUPER-CONVERGENT SOLUTIONS IN TWO-DIMENSIONAL FINITE ELEMENT METHOD OF LINES
下载PDF
导出
摘要 有限元线法(FEMOL)是一种优良的半解析、半离散方法,但其解答存在解析方向和离散方向的精度不相称的弱点。本文提出将二维有限元线法比拟为广义一维问题的概念,遂可将新近提出的一维有限元超收敛计算的单元能量投影(EEP)法推广到二维有限元线法分析中。经有限元线法后处理中EEP超收敛计算而获得的解答,继承和保留了一维有限元中的出色表现,不但使任意一点的位移和应力的解答在两个方向具有相当的精度,而且都具有超收敛性质。文中以二维Poisson方程问题为例,具体给出了有限元线法EEP超收敛的公式,并给出了数值算例,用以表明本法的可行性和有效性。 While the finite element method of lines (FEMOL) is a general and powerful semi-analytical and semi-discretised method for two-dimensional BVP, its solution in the discrete direction and the analytical direction does not behave equally well. Using the analogy between the two-dimensional FEMOL and one-dimensional FEM, the present paper proposed the concept of the generalized one-dimensional problem for the two-dimensional FEMOL and then generalized the newly-developed EEP (Element Energy Projection) method for super-convergence computation in one-dimensional FEM to the two-dimensional FEMOL analysis. By applying the proposed EEP superconvergence computation in the post-processing of FEMOL analysis, both super convergent displacements and stresses at any point can be obtained with remarkable properties which not only balances the accuracy of the two directions but also makes the accuracy highly super-convergent. Detailed formulation and numerical examples for two-dimensional Poisson's equation are given in the paper to demonstrate the feasibility and effectiveness of the method.
出处 《工程力学》 EI CSCD 北大核心 2007年第1期1-10,共10页 Engineering Mechanics
基金 国家自然科学基金资助项目(50278046) 教育部科技创新工程重大项目培育资金项目(704003)
关键词 有限元线法 二维问题 广义一维问题 POISSON方程 超收敛 单元能量投影 FEMOL two-dimensional problem generalized one-dimensional problem Poisson's equation super-convergence element energy projection1
  • 相关文献

参考文献11

二级参考文献22

  • 1王枚,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1124-1134. 被引量:19
  • 2庞之垣.有限元线法的误差估计[J].计算数学,1993,15(1):110-120. 被引量:9
  • 3陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002..
  • 4Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part Ⅰ: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33:1331-1364.
  • 5Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Invited Papers,Proceedings of 1st International Conference on Structural Engineering [C], ed. Long Yuqiu, Beijing: TsinghuaUniversity Press, 1999. 134-141.
  • 6Strang G, Fix G. An analysis of the finite element method[M]. Englewood, Cliffs, N.J.: Prentice-Hall, 1973.
  • 7Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7):178-180.
  • 8袁驷.样条厚薄板通用矩形单元[J].力学学报,1984,16(4):401-407.
  • 9袁驷 王枚 袁明武 孙树立主编.有限元(线)法超收敛应力计算的新方案及其若干数值结果[A].袁明武,孙树立主编.中国计算力学大会论文集[C].北京:科学出版社,2001.43-52.
  • 10Strang G and Fix G. An analysis of the finite element method [M]. Prentice-Hall, 1973.

共引文献79

同被引文献51

引证文献18

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部