期刊文献+

一种基于多尺度边缘的图像融合算法 被引量:4

Image fusion algorithm based on multiscale edges
下载PDF
导出
摘要 给出了一种只利用源图像多尺度边缘点进行融合的图像融合算法.该算法分为三步:首先,对源图像进行多尺度边缘检测;其次,采用边缘相关性最大的融合准则对源图像的多尺度边缘进行融合,得到融合图像的多尺度边缘;最后,由融合图像的多尺度边缘重构出融合图像.该算法融合过程中计算量小,融合图像中最大程度地保留了源图像的边缘信息,在一定程度上对融合图像进行了压缩,从而减小了数据存储所占用的资源以及数据传输占用的带宽.仿真结果表明,用该算法得到的融合图像能有效包含源图像的信息. An image fusion algorithm just using multiscale edges of original images was proposed. There are three steps in this algorithm. Firstly, multiscale edges of the original images were detected. Secondly, these muhiscale edges were fused to get the fusion image's multiscale edges according to the fusion rule, maximizing edge correlation between the fusion image and original images. At last, the fusion image was reconstructed from its multiscale edges. The algorithm using only multiscale edges reduced the computation complexity in the fusion process. The fusion rule enabled the fusion image to hold as much as edge information of original images. Furthermore, the algorithm could compress data even without using any compression coding method, which reduced memory cost and decreased data transfer bandwidth. The experimental results demonstrate that fusion images generated by this algorithm contain the information of original images effectively.
作者 李小娟 赵巍
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第2期229-232,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60502019)
关键词 图像融合 小波变换 多尺度边缘 边缘相关性 image fusion wavelet transform multiscale edges edge correlation
  • 相关文献

参考文献4

  • 1Mallat Stephane,Zhong Sifen.Characterization of signals from multiscale edges[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1992,14(7):710-732
  • 2Nikolov S G,Bull D R,Canagarajah C N.2-D image fusion by multiscale edge graph combination[C]//Proceeding of the Third International Conference on Information Fusion.Paris:[s.n.],2000,1:16-22
  • 3Xydeas C S,Petrovi V.Objective image fusion performance measure[J].Electronic Letters,2000,36(4):308-309
  • 4蒲恬,方庆喆,倪国强.基于对比度的多分辨图像融合[J].电子学报,2000,28(12):116-118. 被引量:92

二级参考文献1

  • 1Jiang Xiaoyu,SPIE.2898,1996年,35页

共引文献91

同被引文献60

  • 1曹治国,王文武.应用统计信号处理和模糊数学的图像融合算法[J].光电工程,2005,32(5):73-75. 被引量:3
  • 2Lewis J J, Nikolov S G, Canagarajah C N, et al. Uni-modal versus joint segmentation for region-based image fusion [ C ]// Willett P K. Ninth International Conference on Information Fusion ( Fusion 2006). New York:Institute of Electrical and Electronics Engineers,2006 (6) : 1 - 8.
  • 3Dempster A P, Larid N, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[ J]. Journal of the Royal Statistical Society, Series B (Methodological) , 1977,1 ( 39 ) : 1 - 38.
  • 4Yang Jinzhong,Blum R S. A region-based image fusion method using the expectation-maximization algorithm [ C ]//Andrew Fitzgibbon. IEEE Conference on Computer Vision and Pattern Recognition ( CVPR 2006 ). Los Alamitos, Calif. : IEEE Computer Society,2006(3) :468 - 473.
  • 5Butt P J, Kolczynski R J. Enhanced image capture through fusion [ C]// IEEE Computer Society. Fourth International Conference On Computer Vision, Los Alamitos, Calif. :IEEE Computer Society,1993(5) :173 - 182.
  • 6敬忠良,肖刚,李振华.图像融合:理论与应用[M].北京:高等教育出版社,2007.
  • 7Wang Z, Ziou D, Armenakis C, et al. A comparative analysis of image fusion methods. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (6) : 1391- 1402.
  • 8Yang Y, Han C Z, Han D Q. A structure information based image fusion algorithm using IHS and discrete wavelet transform. In: Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007. 859-864.
  • 9Candes E J. Compressive sampling. In: Proceedings of the International Congress of Mathematicians, Zurich, Switzerland, 2006. 1433-1452.
  • 10Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289-1306.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部