摘要
为适应电力市场对水电站容量效益的需要,建立了既考虑容量效益又考虑电量效益的梯级电站优化调度模型,并提出了求解该模型的改进PSO算法,该算法能够有效处理目标函数带有层次性的多目标优化问题,具有收敛效率高的特点。用该算法对三峡梯级电站枯水期的优化调度问题进行了研究,使三峡梯级电站在获得尽可能大的调峰容量效益的同时也得到最大的电量效益。
A optimal dispatching model for the hydropower stations is established, in which two objective functions including maximizing peaking capacity benefit and maximizing power generation are involved,and the improved particle swarm optimization (PSO) algorithm solving the model is proposed. The algorithm can handle the level multi-objective optimization problem effectively, and has the advantages of good convergence property and simplicity Optimal dispatching problem of the Thee Gorges Cascade nydropower System during low-flow period is studied with the algorithm to obtain the maximum peaking eapacity benefit.
出处
《水力发电》
北大核心
2007年第1期74-76,共3页
Water Power
基金
国家自然科学基金资助项目(50579022
50539140)
高等学校博士学科点专项科研基金项目(20050487062)
关键词
粒子群优化算法
调峰容量效益
优化调度
梯级电站
particle swarm optimization algorithm
peaking capacity benefits
optimal dispatching
cascade hydropower station