期刊文献+

变换图的正则性和谱半径 被引量:7

Regularity and Spectral Radius of Transformation Graphs
下载PDF
导出
摘要 在前人对八种变换图研究的基础上,探讨了变换后满足正则性的原图的性质,得到了如下结果:G^(+++)及G^(---)是正则图当且仅当G是正则图;G^(++-)和G^(--+)为正则图的充要条件是G为C_n、K_(2,n-2)或K_4;G^(+-+)和G^(-+-)是正则图当且仅当G为C_5、K_7、K_2、K_(3,3)或G_0;G^(-++)和G^(+--)是正则的当且仅当G是(n-1)/2-正则图.同时还讨论了变换图的谱半径上界,并对这些上界进行了估计. In this Paper, we study the graphs which can be transformed to regular graphs. We present the results: G^+++ and G^--- are regular if and only if G is regular; G^++- and G^--+ are regular if and only if G≌ Cn or K2,n-2 or K4; G^+-+ and G^-+- are regular if and only if G ≌ C5 or K7 or K2 or K3,3 or G0; G^-++ and G^+-- are regular if and only if G is (n-1)/2-regular. We also give some upper bounds on the spectral.radius of transformation graphs. Then we estimate these upper bounds.
作者 林祺 束金龙
出处 《运筹学学报》 CSCD 北大核心 2007年第1期102-110,共9页 Operations Research Transactions
基金 "973"项目(2006CB805901) 国家自然科学基金项目(NO.10671074 & 60673048) 上海市自然科学基金项目(No.05ZR14046)
关键词 运筹学 变换图 谱半径 半正则二部图 Operations research, transformation graphs, spectral radius, semi-regular bipartite graphs
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Bondy J A, Murty M R. Graph theory and Its Application, Academic Press, 1976
  • 2[2]Ales J, Bacik R. Strong elimination orderings of the total graph of a tree, Discrete Appl. Math. 1992, 39:293~295
  • 3[3]Baur D, Tindell R. The connectivity of line graphs and total graphs, J. Graph Theory 1982, 6:197~204
  • 4[4]Behzad M. Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965
  • 5[5]Behzad M, Chartrand G. Proc. Edinburgh Math. Soc. 1966/67, 15:117~120
  • 6[6]Iqbalunnisa T, Janakiraman N, Srinivasan N. Note on iteralted total graphs, J. Indian Math. Soc. New Ser. 1990, 55:67~71
  • 7[7]Gudagudi B R, Stewart M J. On n-th subdivision graphs, J. Karmatak Univ. Sci. 1974, 19:282~288
  • 8[8]Van Rooij A C M, Wilf H S. The interchange graph of a finite graph, Acta Mate. Acad. Sci. Hungar. 1965, 16:163~169

共引文献17

同被引文献15

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部