摘要
Based on data of earthquake sequences with Ms≥5.0 in Chinese mainland from 1970 to 2004, for different sequence types and different rupture modes of the main shock, the relationship between aftershock distribution size R and the magnitude of the main shock Mo has been studied statistically. Considering the rupture mode of the main shock, we give the quantitative statistical relationships between R and Mo under 95% confidence level for different sequence typos. Qualitatively, lgR, the logarithm of the aftershock distribution size, is positively correlative to the M0, but the data distribution is dispersed. Viewing from different sequence typos, the correlation between R and M0 is very weak for isolated earthquake type (lET) sequence, R distributes in the range from 5 to 60 km; For mainshock-aftershock type (MAT), lgR is positively correlative to M0; For multiple main shock type (MMT), the corelation between lgR and M0 is not very obvious when M0≤6.2 and R distributes in the range from 5 to 70 km, while it shows a linear correlation when M0≥6.3. The statistical results also show that the occupational ratios of different sequence types for strike-slip and oblique slip are almost the same. But for dip-slip (mostly are thrust mechanisms), the ratio of MAT is higher than that of IET and MMT. Comparing with previous results, it indicates that, when M0 is large enough, R is mainly determined by M0 and there is almost no relationship with the rupture mode of the main shock.
Based on data of earthquake sequences with Ms≥5.0 in Chinese mainland from 1970 to 2004, for different sequence types and different rupture modes of the main shock, the relationship between aftershock distribution size R and the magnitude of the main shock Mo has been studied statistically. Considering the rupture mode of the main shock, we give the quantitative statistical relationships between R and Mo under 95% confidence level for different sequence typos. Qualitatively, lgR, the logarithm of the aftershock distribution size, is positively correlative to the M0, but the data distribution is dispersed. Viewing from different sequence typos, the correlation between R and M0 is very weak for isolated earthquake type (lET) sequence, R distributes in the range from 5 to 60 km; For mainshock-aftershock type (MAT), lgR is positively correlative to M0; For multiple main shock type (MMT), the corelation between lgR and M0 is not very obvious when M0≤6.2 and R distributes in the range from 5 to 70 km, while it shows a linear correlation when M0≥6.3. The statistical results also show that the occupational ratios of different sequence types for strike-slip and oblique slip are almost the same. But for dip-slip (mostly are thrust mechanisms), the ratio of MAT is higher than that of IET and MMT. Comparing with previous results, it indicates that, when M0 is large enough, R is mainly determined by M0 and there is almost no relationship with the rupture mode of the main shock.
基金
Joint Seismological Science Foundation of China(105076)
continued subject″Statistical Features of Aftershock Sequences and Forecastof the Large Aftershocks″(2004BA601B01-04-02)
Ministry of Science and Technology of Chinain the 10th Five-year Plan.